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Abstract

Visual perception seems to provide a direct and immediate view onto the outside world. In reality, it

is an active and adaptive process. Cognitive factors, such as our prior knowledge and goals, transform

the information streaming in from the retina to create a reconstruction of our environment tailored

to our needs. The study of these cognitive influences on perception and their underlying mechanisms

falls within the purview of visual cognition. If the principles gleaned from these studies can inform

our understanding of cognition more generally, however, it is necessary to test if these principles

generalize to domains beyond visual perception (and, if not, to understand if these principles can

at least provide a useful basis for comparison and understanding). Towards that end, the work

in this thesis examines how expectation and attention influence visual perception and additionally

interrogates these same processes in the context of working memory. In the realm of expectation, we

show that percepts reflect a weighted average of sensory information and prior knowledge, biasing

percepts towards expected values. We find that these biases persist in working memory, accumulating

over time to counteract memory noise. In the realm of attention, we find that, once attended, both

percepts and memories are represented using radically different (i.e. orthogonal) patterns of neural

activity relative to their unattended state. Furthermore, in this new post-attentional subspace,

perceptual and mnemonic codes are reorganized in a way that allows task-relevant features to be

decoded and task-irrelevant features to be abstracted away. This transform may selectively gate

the influence of perceptual and mnemonic representations on other cognitive processes. In both

the case of expectation and attention, these common principles uniting perception and memory

coexist with key differences. For instance, learning modifies the influence of expectations on memory

faster than on perception, and attention biases competition between perceptual but not mnemonic

representations. Together, these results suggest that while the cognitive transforms observed in

perception do generalize to other domains, they may be actualized by distinct mechanisms.
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Chapter 1

Introduction

1.1 Vision as a model system for studying cognition

The goal of cognitive neuroscience is to explain how the nervous system produces intelligent behavior.

Over the past few decades, the study of visual cognition – or how humans and other animals perceive

and make judgments about the visual world – has proven to be a particularly productive domain in

which to study the relationship between brain and behavior.

The notion that vision is a productive domain in which to study cognition may be counter-

intuitive. As a first-order approximation, visual processing is often described as an automatic,

feedforward process displaying little of the flexibility associated with intelligent behavior. Visual

input is understood to pass through a hierarchical sequence of cortical regions along the ventral

surface of the brain and on to prefrontal cortex. At each level of the hierarchy, neural activity

reflects increasingly abstract features of the visual input (DiCarlo et al., 2012), from simple edges to

longer contours and surfaces to view-invariant high-level semantic information (Freiwald and Tsao,

2010; Yamins et al., 2014). From this perspective, knowledge of the visual input arriving from the

retina and the sequence of feedforward transforms executed along the ventral stream are sufficient

to describe visual processing.

Although this perspective provides a reasonable first pass description, it has been long known

to psychology and neuroscience that visual processing critically depends on cognitive factors as well

(Gregory, 1980; Von Helmholtz, 1866). The history and goals of the observer matter. Consider the

painting by Joseph Turner shown in Fig. 1.1.
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Figure 1.1: Painting by J. M. W. Turner, ca. 1845

Take another look after learning that the work is titled ‘Sunrise with Sea Monsters’ and pay

particular attention to the lower central portion of the painting. For many, this additional context

and the cue to focus on a particular aspect of the visual input substantially alters their perceptual

interpretation.

Such cognitive influences allow vision to be adaptive - sensory input is transformed not just

according to a set of predefined rules, but also according to the knowledge and goals of the observer.

Two cognitive factors, expectation and attention, are each particularly crucial for overcoming a severe

limitation of visual processing. First, visual sensory inputs are often ambiguous. The presence of

unaccounted-for fluctuations (“noise”) in patterns of light striking the retina as well as in neural

activity, coupled with the projection of a 3D visual environment onto a 2D retinal sheet, means that

many different visual scenes can evoke any particular pattern of sensory stimulation. The visual

system must rely on expectations derived from prior experience to resolve this ambiguous input (de

Lange et al., 2018; Panichello et al., 2013). Second, primates receive far more visual input through

the retina (an estimated tens of millions of bits per second, Koch et al., 2006) than we are able to

process in depth. While we tend not to notice this processing bottleneck, it is easily revealed under

laboratory conditions that cause human subjects to routinely fail to notice large, sudden changes in

their visual environment (Simons and Levin, 1997; Simons and Rensink, 2005). As a result, we use

attention to focus on aspects of the visual input that are most likely to be informative, given our

2



current needs.

These cognitive influences on vision are worthy objects of study in their own right because humans

are highly visual animals and disorders of visual cognition can have profound consequences for

behavior. Schizophrenic hallucinations are thought to emerge from expectation gone awry (Corlett

et al., 2019), and deficits in attention result in profound disturbances of awareness (Vallar, 1998).

But studying cognitive influences on vision is also a strong leverage point for cognitive neuro-

science more generally. Cognitive neuroscience is difficult because the objects of study are latent

variables (representations) and processes (computations) that are reflected in behavior and neural

activity but can be extremely difficult to infer if not sufficiently constrained. A common strategy in

a visual cognition experiment is to present a stimulus drawn from a well-parameterized space (e.g.,

a set of colors) and then ask the subject to reconstruct the stimulus or render a judgment in that

space. Such a design substantially constrains the representational space (the range of possible stim-

uli) as well as the start- and end-state of a subject’s representation on a particular trial. Intervening

representations between the presentation of the stimulus and the subject’s report can be inferred

via behavioral modeling or decoding of neural data. And computations can be inferred from the

manner in which representations transform over the course of the trial. Thus, cognitive factors can

be studied under relative controlled conditions, and interpretation of neural activity aided by the

comparatively well-understood anatomy and physiology of the visual system.

The work in this thesis leverages this strategy to examine how expectation and attention trans-

form visual representations. These studies build on a large body of work examining how these

processes influence visual perception. If the principles gleaned from studies of perception can inform

cognitive neuroscience more generally, however, it is necessary to test if these principles generalize

beyond perception to other types of information processing (and, if not, to understand if these prin-

ciples can at least provide a useful basis for comparison and understanding). As a step towards that

end, we explore how expectation and attention influence visual perception and then examine how

these same processes influence visual memory. Our work in each of these domains is summarized in

more detail below.
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1.2 Transformation of visual percepts and memories by ex-

pectation

Visual input is often noisy and ambiguous, posing a challenge for perception: what is the most

likely cause of the sensory input? This challenge can be addressed by relying on previous experience

and learning to generate a percept reflecting a ‘best guess’, given the sensory data and one’s prior

knowledge. Accordingly, humans perceive stimuli faster and more accurately when they have suffi-

cient knowledge to generate informed expectations about what they may see (de Lange et al., 2018;

Panichello et al., 2013). Subjects are better at identifying objects when they are shown in their

typical environment (e.g., a spatula in a kitchen, Bar, 2004; Biederman, 1972; Biederman et al.,

1982; Davenport and Potter, 2004; Palmer, 1975) or are primed with an object drawn from the same

context (Gronau et al., 2007, Sachs et al., 2011). More generally, subjects detect noisy stimuli more

quickly and at greater levels of degradation when primed with information related to the identity of

the object (Eger et al., 2007; Esterman and Yantis, 2010; Melloni et al., 2011; Reynolds, 1985).

While it is clear that expectations influence perception, a precise computational account of how

expectations are integrated with incoming sensory information is an active area of investigation.

As a standard for comparison, the behavior of humans and other animals is often compared to the

hypothetical behavior of an ideal Bayesian observer. Bayesian inference describes the optimal way

in which an observer should combine noisy sensory information with prior expectations to infer the

state of the world. Imagine that a participant is asked to estimate the horizontal position of a

briefly presented stimulus. Imagine also that in addition to the imperfect information obtained from

the stimulus, the participant knows from previous trials that central positions are more likely that

peripheral ones. These two sources of information can be represented as distributions over the range

of possible positions (i.e., the likelihood and the prior, Fig. 1.2). To estimate the horizontal position

as a Bayesian observer would, these two distributions should be multiplied, yielding a posterior

distribution that reflects information from both sources, weighted by their precision. The result is a

more precise estimate that is biased towards the prior. Remarkably, human behavior in perceptual

tasks is often consistent with a Bayesian observer (e.g., Girshick et al., 2011; Jazayeri and Shadlen,

2010; Stocker and Simoncelli, 2006).

These results suggest that the nervous system may combine sensory input and expectations in a

manner consistent with a Bayesian observer (Aitchison and Lengyel, 2017), or at least implements

an approximation of this process (e.g., compare Ma et al., 2006 and Sohn et al., 2019 for accounts

which do / do not rely on explicit neural representations of likelihoods and priors). Accordingly,
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Figure 1.2: Multiplying the likelihood over stimulus values derived from sensory evidence (blue)
by the prior (red) yields a lower-variance posterior estimate biased towards the mean of the prior
(purple). Image reproduced from Ma, 2019.

neural representations of expected stimuli are more precise (Brandman and Peelen, 2017; Hindy

et al., 2016; Kok et al., 2012) and biased towards prior expectations (Kok et al., 2013; van Bergen

et al., 2015).

In Chapter 2 of this thesis, we build on his work by explicitly testing if percepts reflect a precision-

weighted combination of sensory input and prior expectations, as predicted by Bayesian inference.

To accomplish this, we presented participants with faces drawn from a continuous parameterized

identity space (analogous to the range of horizontal positions in Fig. 1.2). Additionally, we trained

participants to linearly map a continuum of tones onto this stimulus space through associative

learning. As a result, tones became predictive of face identity. Thus, after training, we could precisely

control the mean of a subject’s prior and likelihood function on a trial-by-trial basis by presenting

a particular tone and face, respectively. Drawing inspiration from the multisensory integration

literature (Ban et al., 2012; Murphy et al., 2013), we generated precise behavioral and neural

predictions for the discriminability of specific tone-face pairs assuming optimal Bayesian inference

and tested these predictions using psychophysics and fMRI. We show that behavior in this task

is consistent with Bayesian inference and provide evidence for neural fusion of sensory inputs and

expectations.

In Chapter 3 of this thesis, we explore if this inference process continues beyond perception and

into visual memory. Continuing to apply Bayesian inference after encoding is potentially useful

because noise continues to accumulate in visual representations as they are held in working memory.
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Subjects recall visual stimuli less accurately with increasing memory delays (Pertzov et al., 2017;

Rademaker et al., 2018; Schneegans and Bays, 2018; Shin et al., 2017) and the neural representations

underlying visual memories have been shown to randomly diffuse over time (Wimmer et al., 2014;

Wolff et al., 2020), possible due to Poisson variability in spiking (Bays, 2015; Burak and Fiete, 2012).

Therefore, Bayesian inference could help mitigate the deleterious effects of noise in working memory

just as it does in perception.

To test this hypothesis, we collected behavioral data from human and non-human primate sub-

jects on a task in which they were asked to remember colors drawn from a circular ‘hue’ space and

reconstruct the colors in that space after a memory delay (Wilken and Ma, 2004). If subjects were

applying prior knowledge (accrued over phylogenetic or ontogenetic time) and expected some hues

more than others, then their responses on this task should be biased towards expected stimuli. Ac-

cordingly, reports on this task clustered around certain hues. Furthermore, if these biases reflect the

influence of a prior in accordance with Bayesian inference, then biases should increase with memory

noise because the prior will increasingly dominate the Bayesian update. This is exactly what we

observed when we increased the delay length and memory load, both of which are predicted to in-

crease the accrual of random error (Bays, 2015; Burak and Fiete, 2012). Finally, to explicitly test if

these biases reflected expectations, we manipulated subjects’ priors by manipulating the distribution

of hues presented during the experiment, and found that these biases shifted towards the (newly)

expected hues. We were able to recapitulate these phenomena using a dynamical model of mem-

ory which postulates random diffusion of memories coupled with systematic drift towards attractor

states reflecting expected hues, linking these behavioral results to a rich theoretical and experimental

literature on memory dynamics (reviewed in Brody et al., 2003; Chaudhuri and Fiete, 2016) and

suggesting neural architectures that could implement this approximation to Bayesian inference.

1.3 Transformation of visual percepts and memories by at-

tention

Attention is critical for managing the limited capacity of working memory, the mental workspace in

which sensory inputs are integrated with remembered relevant sensory and cognitive variables and

ongoing goals to guide behavior (Baddeley, 2003). The benefits of attention are easily revealed via

visuospatial cueing. When subjects are informed where task-relevant stimuli will appear in the visual

environment, they are faster and more accurate at detecting or making simple judgments about those

6



Figure 1.3: The normalization model of attention. An attentional field (top) multiplicatively scales
the latent stimulus drive (left) to neurons with with receptive fields within the locus of attention prior
to normalization by inhibitory suppressive drive (bottom). The result is an enhanced population
responses to attended stimuli (right). Image reproduced from Reynolds and Heeger, 2009.

stimuli, even when their gaze is fixed (Posner, 1980). Superior performance at processing stimuli

at these locations comes at the cost of deficits in processing stimuli presented elsewhere, consistent

with the role of attention in prioritizing information in a limited capacity system (Desimone and

Duncan, 1995).

Visuospatial attention exerts its effects, in part, by modulating evoked neural responses to stimuli

in visual cortical and subcortical regions. Attention has been shown to multiplicatively scale neural

responses (McAdams and Maunsell, 1999; Treue and Mart́ınez Trujillo, 1999), sharpen neuronal

tuning curves (Spitzer et al., 1988, Martinez-Trujillo and Treue, 2004), and increases contrast gain

(Reynolds et al., 2000). This diversity of results is parsimoniously explained by a computational

model in which attention multiplicatively scales the latent effective drive to a neuron, which is

then normalized by the pooled activity of the population (Reynolds and Heeger, 2009, Fig. 3.3).

The precise manifestation of these effects depends on the breadth of attention, but the ubiquitous

phenomenon is that neural responses to attended stimuli are enhanced relative to unattended stimuli.

Substantial progress has been made in identifying the networks responsible for controlling these

differential responses to attended and unattended stimuli. Neuroimaging work in humans revealed

that attending to a spatial location engages a distributed frontal-parietal network, with weaker

effects observed in visual cortex, suggesting that attention signals originates in fronto-parietal regions
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and influence posterior cortex via feedback (Kastner et al., 1999). This work has been supported

by primate electrophysiology studies showing an anterior-to-posterior flow of volitional attentional

signals (Buschman and Miller, 2007) and causal work showing that microstimulation of prefrontal

cortical regions elicits attention-like effects in visual cortex (Moore and Armstrong, 2003; Moore and

Fallah, 2001).

Top-down enhancement of visual evoked responses may thus allow attended stimuli to propagate

through the cortical hierarchy and into the lateral prefrontal cortex, a key locus of working memory.

Accordingly, neurons in prefrontal cortex are sensitive to task-relevant information presented at

attended, but not unattended locations (Everling et al., 2002). Attention may also filter neural

signals by selectively routing information via synchrony (e.g. Bosman et al., 2012; Córdova et al.,

2016; Saalmann et al., 2012).

While our ability to selectively attend ‘externally’ to percepts has been extensively studied,

our ability to attend ‘internally’ to memory representations is much less understood. Indeed, it was

initially thought that the last point at which attention could influence visual memory representations

was shortly after encoding, while perceptual traces of the stimuli were not yet extinguished (Phillips,

1974; Sperling, 1960). Subsequent work, however, revealed that working memory representations

that are cued as task-relevant are recalled with greater accuracy (Griffin and Nobre, 2003; Landman

et al., 2003; Pertzov et al., 2013; Sligte et al., 2008). Furthermore, such ‘retro-cueing’ paradigms

drive neural activity in the same fronto-parietal network known to mediate visuospatial attention

(LaBar et al., 1999; Lenartowicz et al., 2010; Nee and Jonides, 2009; Nobre et al., 2004). However, it

is unclear if perceptual and mnemonic attention share a deep mechanistic homology or are distinct

processes that simply share common functional consequences.

In Chapter 4 of this thesis, we build on this work by explicitly comparing and contrasting

attention in perception and memory. To avoid confusion, we refer to perceptual and mnemonic

attention using the distinct terms ‘attention’ and ‘selection’. To study the neural basis of these

processes, we recorded and analyzed neural activity from prefrontal, parietal, and visual cortex as

monkeys performed a variant of the color working memory task described above. Critically, by

spatial cuing stimuli as task-relevant either before or after encoding, we were able to encourage the

animals to use attention or selection (respectively) to improve their report of the cued item.

During selection, we found that information about which stimulus was task-relevant emerged first

in prefrontal cortex. This suggests that selection, like attention, is directed from prefrontal cortex.

Strikingly, in prefrontal cortex similar population codes were used to signal the task-relevant stim-

ulus, suggesting that a common mechanism directs external and internal attention. However, these
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control signals were coded differently for attention and selection in other brain regions, suggesting

the underlying mechanisms may diverge and uniquely affect stimulus representations. Accordingly,

while both attention and selection enhanced information about the cued stimulus in neural firing

rates, attention primarily modulated representations in visual cortex during encoding (and this in-

formation propagated downstream to parietal and prefrontal cortex), while selection primarily acted

within prefrontal and parietal regions. Furthermore, selection did not decrease information about

the uncued stimuli, suggesting that, unlike attention, selection does not bias competitive dynamics

between representations (Desimone and Duncan, 1995). However, attention and selection displayed

an unexpected common feature; both transformed stimulus representations into a new subspace,

suggesting a means which the contents of working memory can be selectively ‘gated’ into a state

that enables the preparation of cognitive or motor plans.
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Chapter 2

Transformation of percepts by

expectation

2.1 Abstract

Humans perceive expected stimuli faster and more accurately. However, the mechanism behind

the integration of expectations with sensory information during perception remains unclear. We

investigated the hypothesis that such integration depends on “fusion” — the precision-weighted

averaging of different cues informative about stimulus identity. We first trained subjects to map

a range of tones onto faces from a gender continuum via associative learning; these two features

served, respectively, as expectation and sensory cues to gender. We then tested specific predictions

about the consequences of fusion by manipulating the congruence of these cues in psychophysical

and fMRI experiments. Behavioral judgments and patterns of neural activity in auditory association

regions were consistent with fusion of sensory and expectation cues, providing evidence for a precise

computational account of how expectations influence perception.

2.2 Introduction

Prior experience and learning guide perception, allowing for fast and accurate processing of sensory

input that is often noisy and ambiguous (Hutchinson and Turk-Browne, 2012; Oliva and Torralba,

2007; Panichello et al., 2013). As a result, it has long been suggested that perception may be best

understood as a form of probabilistic inferences about the outside world, rather than a veridical
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representation of sensory inputs Gregory, 1980; Von Helmholtz, 1866. However, the precise compu-

tation by which expectations and sensory information are combined to refine perception remains an

active area of investigation (de Lange et al., 2018).

Bayesian inference describes the optimal means by which an observer can combine noisy sensory

information with prior expectations to infer the state of the world. Strikingly, human behavior

in perceptual tasks has been shown to be consistent with a Bayesian observer (Girshick et al.,

2011; Jazayeri and Shadlen, 2010; Stocker and Simoncelli, 2006), engendering proposals that neural

systems may combine sensory inputs and expectations in this optimal fashion (for a recent review,

see Aitchison and Lengyel, 2017).

Evidence from human neuroimaging has revealed that perceptual representations display char-

acteristics consistent with Bayesian inference, in which neural representations reflect a “fused”

precision-weighted average of feature estimates provided by sensory inputs and expectations. The

result is a more precise representation that is biased towards the prior expectation. Accordingly, ex-

pected stimuli are more easily decoded from patterns of neural activity (Brandman and Peelen, 2017;

Hindy et al., 2016; Kok et al., 2012), consistent with an increase in precision. And reconstructed neu-

ral representations are biased towards prior expectations (Kok et al., 2013; van Bergen et al., 2015).

However, because these studies did not independently manipulate sensory- and expectation-based

estimates, the degree to which representations were in fact fused remains unclear.

Here, we build on this work by explicitly testing if percepts reflect a weighted combination of

sensory and expectation cues. To investigate this question, we drew inspiration from the multisensory

integration and cue combination literatures, which have developed rigorous methods for testing

for fused representations in a computationally analogous context (i.e., the fusion of two sensory

representations, Ban et al., 2012; Murphy et al., 2013). We combine analysis of psychophysical and

neuroimaging data, motivated by formal models, to test the hypothesis that perceptual judgments

and neural representations reflect a fusion of sensory and expectation cues.

2.3 Results

2.3.1 Learned tone-face associations bias behavior

To study fusion, we first established a novel set of expectations via associative learning in the domain

of face perception. In addition to the gender information conveyed by the visual features of faces

(i.e., “sensory” cues) we introduced a novel source of gender information by training subjects to
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Figure 2.1: Learned tone-face associations bias behavioral reports. (A) Experiment 1 trial structure.
On each trial, subjects were presented with a pure tone and an image of a face drawn from a
continuous gender space. At the end of the trial, subjects continuously morphed a face through
gender space to match the face they had seen. Inset: example mappings for 5 tone face-pairs; in
this example, lower notes predict more feminine faces. (B) Mean learning curve across subjects.
During an initial training phase (white region), the tones predicted the faces perfectly and subjects
received feedback on their performance. The congruent test phase (purple) was identical to this
training phase, except that subjects no longer received feedback. During the incongruent test phase
(blue), the pairing of tone and face was random. Y-axis reflects error in gender space units: 0.05
units corresponds to 1 step in the 41-step space. Error bars reflect standard error of the mean.
(C) Mean signed error (bias) as a function of tone-face mismatch during the incongruent test phase.
Positive x-values indicate trials on which the tones predicted a more feminine face than that actually
presented. Positive y-values indicate that subjects reported a more feminine face than that actually
presented. Both axes are differences in gender space units; error bars are standard error of the mean.

linearly map auditory tones onto a gender continuum (i.e., “expectation” cues; Fig. 2.1a). We were

not especially interested in gender per se, but chose this domain because face gender is amenable

to multivariate decoding from fMRI (Contreras et al., 2013; Kaul et al., 2011) and because face

perception is associated with a well-defined cortical network (Dekowska et al., 2008).

On each trial of the experiment, subjects (N = 48) were presented with tone-face pairs (Fig. 2.1a).

The faces were drawn from 41 points of a continuous gender space, varying between the average

female face and the average male face. During an initial training phase, each of 41 tones, which

varied sequentially in pitch, predicted the face with the corresponding index on the continuum

deterministically. After the offset of the tone and face, subjects were presented with a face randomly

drawn from gender space and had to morph it to match the face they had just seen as closely as

possible. Subjects received feedback on their performance and became more accurate over the

course of this training phase (Fig. 2.1b, white region). Across subjects, the mean change in error

between the first twenty and last twenty trials was 0.054, significantly below zero (t(47) = 5.019,

p = 7.88e− 06).

Following the training phase, there were two test phases during which subjects no longer received

feedback on their performance. During the congruent test phase (Fig. 2.1b, purple region) the

tones predicted the faces deterministically, as during training. During the incongruent test phase
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(Fig. 2.1b, blue region), the pairing of tone and face was random. Error was significantly greater

during the incongruent test phase than during the congruent test phase (t(47) = 2.824, p = 0.007).

Errors during the incongruent test phase were influenced by the sign and magnitude of the tone-face

mismatch. When the tone predicted a more feminine phase then the one that was actually shown,

subjects tended to report a more feminine face (and vice-versa, Fig. 2.1c). The mean correlation

between tone-face mismatch and mean signed error across subjects was 0.110, significantly greater

than zero (t(47) = 10.204, p = 1.66e− 13). Together, these results suggest that subjects learned the

mapping between the tones and the gender space and that this association was sufficient to generate

expectations that could bias behavior.

2.3.2 Behavioral evidence for expectation and sensory fusion

In experiment 2, a new cohort of subjects (N = 60) was exposed to a linear mapping between the

tones and faces. We then tested whether expectations and sensory information were integrated in

a manner consistent with fusion using psychophysical techniques originally developed for studying

cue combination in depth perception (Ban et al., 2012; Murphy et al., 2013).

After performing a task identical to the training phase from experiment 1, subjects performed

a gender discrimination task. On each trial, they were presented with two tone-face pairs and had

to report whether the second face was more feminine than the first (Fig. 2.2a). By systematically

manipulating the predictive validity of the tones (Fig. 2.1b) we derived two tests for fusion.

The first test relates performance on ∆Congruent trials to performance on ∆Face and ∆Tone

trials. For a conservative null hypothesis, we assume that subjects still make use of the expectation

cues, but that the information along each cue dimension is not fused and remains independent. Under

these assumptions, the optimal solution is to recast task as a discrimination problem in a space with

two orthogonal cue axes (Fig. 2.3a). The discriminability of the two tone-face pairs on ∆Congruent

trials should then be the hypotenuse (root quadratic sum) of the discriminability when only the

tones or faces differ (Fig. 2.3b). In the case of fusion, the sensory and expectation dimensions are

not independent; observers take a precision weighted average of face and tone information for each

pair to produce a single estimate in gender space (Fig. 2.3c). As a result, performance is suppressed

in the ∆Face and ∆Tone conditions because the difference along one dimension (i.e., face and tone,

respectively) is diluted by averaging in the other dimension that does not contain a difference (i.e.,

tone and face, respectively). Performance in the ∆Congruent condition should thus exceed the root

quadratic sum of these suppressed levels (Fig. 2.3d).
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Figure 2.2: Discrimination task for testing fusion. (A) Discrimination task trial structure. On each
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more feminine than the first. (B) Discrimination task trial types. g refers to a point in masculine-
to-feminine gender space linked to a particular tone and face stimulus. ∆g is calculated separately
for each condition and varies over trials according to a staircasing algorithm that identifies a 75%
accuracy threshold (final ∆g = JND). For all trials, the first tone accurately predicted the first face.
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second tone predicted the same gender as the second face. On ∆Incongruent trials, both the second
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performance in the ∆Congruent condition can be predicted by performance in the ∆Face and ∆Tone
according to the Pythagorean theorem (dotted line). Because cue axes are orthogonal, performance
on ∆Congruent and ∆Incongruent trials is equal. (C) Under fusion, observers take a precision-
weighted average of gender estimates from the faces and tones, resulting in a 1D discrimination
problem. (D) As a result, performance in the ∆Face and ∆Tone conditions will be suppressed
because an uninformative cue has been averaged in. Because both cues are informative, performance
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where JND reflects the ∆g in each condition that produced 75% discrimination accuracy. Error
bars reflect standard error of the mean across subjects. (F) Mean of the two fusion metrics across
subjects (computed using the first of the two analyzed congruent staircases). Violin plots reflect
bootstrapped distribution of the mean. Asterisks reflect bootstrap tests vs zero: * p < 0.05, **
p < 0.01, *** p < 0.001.
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The second test for fusion compares performance on ∆Congruent vs. ∆Incongruent trials. An

independence mechanism predicts that performance in the ∆Congruent and ∆Incongruent conditions

should be equivalent because the distance between tone-face pairs in this bivariate space is the same

(Fig. 2.3b). In contrast, under fusion, the averaging of conflicting cues in the ∆Incongruent condition

will reduce the differences between pairs and hamper discrimination relative to the ∆Congruent

condition (Fig. 2.3d).

To quantify the discriminability of the faces, we measured sensitivity in each subject to increments

in gender space. Using a staircase procedure, we calculated the just noticeable difference (JND) in

each condition as the distance between the two stimuli that resulted in 75% accuracy. We included

twice as many ∆Congruent trials (with the original tone-face mappings intact) as other trial types

to mitigate interference from the ∆Incongruent, ∆Face, and ∆Tone conditions that violated these

mappings. However, to equate power in calculating sensitivity, we dummy coded the ∆Congruent

trials into two sets and ran independent staircases on them, with the second serving as a replication.

Consistent with a fusion mechanism: (1) sensitivity in both ∆Congruent conditions exceeded the

root quadratic sum of ∆Face and ∆Tone (t(59) = 2.218, p = 0.030; t(59) = 2.053, p = 0.045), and

(2) sensitivity in both ∆Congruent conditions exceeded ∆Incongruent (t(59) = 3.995, p < 0.001;

t(59) = 4.359, p < 0.001, Fig. 2.3e-f).

2.3.3 Neural evidence for expectation and sensory fusion

Finally, in experiment 3, we used fMRI to explore how fusion was reflected in neural representations.

A new cohort of subjects was first trained on tone-face mappings outside the scanner. Then, in the

scanner, they performed an oddball task (Fig. 2.4a) while viewing a single tone-face pair on each

trial, and we manipulated the validity of the tone-face relationship across trials.

Separate machine learning classifiers were trained to decode gender from trials in which (Fig. 2.4b):

both the tone and face conveyed the same gender (∆Congruent), the tone conveyed one gender and

the face conveyed the other (∆Incongruent), the tone conveyed gender and the face was neutral

(∆Tone), and the tone was neutral but the face conveyed gender (∆Face). That is, rather than

having subjects discriminate tone-face pairs within trial (as in experiment 2), we used classifiers to

measure discriminability across trials within each condition. Discriminability was quantified with

d-prime, based on the proportion of test trials correctly vs. incorrectly labeled — e.g., how often

the classifier guessed “male” for male trials (hits) vs. for female trials (false alarms).

We modeled the design and analysis of this imaging study after experiment 2 because the in-
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Figure 2.4: Neuroimaging design and results. (A) Each fMRI trial contained one tone-face pair.
To ensure attention, subjects pressed a key on infrequent oddball trials where either the tone or
face was replaced by two rapid tones or faces, respectively, and otherwise withheld their response.
Oddball trials were discarded from analysis. (B) There were four cue conditions: only the face
indicating gender (∆Face), only the tone indicating gender (∆Tone), the face and tone indicating
the same gender (∆Congruent), and the face and tone indicating different genders (∆Incongruent).
Within each condition, the gender could either be male or female, and ∆Incongruent trials were
labeled based on the gender of the face. We assessed the gender information in each condition
by attempting to discriminate neural patterns for male and female trials using a classifier. (C)
Regions of interest (ROIs), generated using automated meta-analyses of published neuroimaging
data (Yarkoni et al., 2011). (D) Performance of the four classifiers (in units of d-prime) for each
ROI. Dotted line indicates root quadratic sum of ∆Face and ∆Tone d-prime, as in Figure 3. Error
bars are standard error of the mean. L/R indicate left/right hemisphere, STG = superior temporal
gyrus. Asterisks reflect bootstrap tests vs zero. (E) Mean univariate parameter estimates for each
condition and ROI, averaged across trials, voxels, and subjects. Error bars are standard error of
the mean across subjects. Lines and asterisks reflect dependent t-tests: · p < 0.10, * p < 0.05, **
p < 0.01, *** p < 0.001.
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dependence model remains a strong null hypothesis. Indeed, any region that contains a mixture of

face- and tone-selective voxels will display a pattern consistent with independence. The introduction

of cue conflicts on ∆Face and ∆Tone trials is a calculated design decision that allows us to test that

superior performance in the ∆Congruent condition is, in fact, due to fusion, as described above.

We performed an exploratory analyses to identify brain areas in which neural representations

were consistent with fusion. To that end, we defined seven regions of interest (ROIs, Fig. 2.4c) that

together cover a broad swath of face- and tone-sensitive areas. ROIs were defined using independent,

automated metanalyses (Yarkoni et al., 2011). Single-trial parameter estimates were extracted from

each voxel within each ROI and served as the features for classification analyses.

Across the seven ROIs, the pattern of performance across the four classifiers was most consistent

with fusion in the left auditory cortex and superior temporal gyrus, with a weaker qualitative

trend in right auditory regions (Fig. 2.4d). Accordingly, both fusion metrics were trending towards

significance in this ROI (Fig. 2.5a-b, quadsum test: p = 0.0868, incongruent test: p = 0.079,

bootstrap).

Classification performance was poor in the two ventral face ROIs (all classifiers p > 0.05 vs zero,

Fig. 2.4d), perhaps due to weak topographic organizations for gender information. Classification

in left and right amygdala was consistent with independence. In both regions, performance in the

∆Congruent and ∆Incongruent conditions was statistically indistinguishable (Fig. 2.5b), and while

performance in the ∆Congruent was numerically greater than the ∆Face and ∆Tone conditions,

it did not exceed quadratic summation (Fig. 2.5a). Right inferior temporal gyrus displayed an

unexpected pattern in which performance in the ∆Congruent and ∆Incongruent conditions were

statistically equivalent and tended to be worse than in the ∆Face and ∆Tone conditions. The

comparison of ∆Congruent vs ∆Face was significant (p = 0.018, randomization test, all other p >

0.10). Such a pattern could be generated by a region in which separate populations of voxels encode

face and tone information and engage in mutually inhibitory interactions.

The pattern of classification performance in left auditory cortex / STG was unrelated to the

overall BOLD activity in each condition (Fig. 2.4e). Indeed, repeated measures ANOVA revealed

that the mean parameter estimate in this region was not modulated by condition (F (3, 93) = 0.42,

p = 0.740). Mean parameter estimate was significantly modulated by condition in left (F (3, 93) =

3.04, p = 0.033) and right (F (3, 93) = 3.13, p = 0.030) occipitotemporal cortex, as well as the

inferior frontal gyrus (F (3, 93) = 2.89, p = 0.040). Post-hoc t-tests revealed that this was due to

relatively lower parameter estimates in the ∆Tone condition (Fig. 2.4e).

This fMRI design allowed us to plan, a priori, an additional ”transfer” test for fusion (Ban et al.,
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lines reflect trained classification boundaries. (D) The mean transfer test statistic for each ROI.
Violin plots reflect the bootstrapped distribution of the mean. Asterisks reflect bootstrap tests vs
zero: · p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure 2.6: Results of transfer test searchlight. Thresholded p-map of the transfer test searchlight
(corrected for multiple comparisons). Positions of assigned values correspond to searchlight centers.

2012; Murphy et al., 2013). Under fusion, gender estimates from tones and/or faces are encoded

in the same representational space. Therefore, a gender classifier trained on ∆Tone trials should

be able to decode ∆Face trials, and a gender classifier trained on ∆Face trials should be able to

decode ∆Tone trials (Fig. 2.5c). In contrast, when tone and face information are independent, a

classifier trained on ∆Face trials should not successfully decode ∆Tone trials, and vice versa. The

transfer test statistic was thus the average d-prime of a classifier trained and tested in this manner,

averaged across folds. Consistent with the first two fusion tests, we observed significant transfer in

left auditory cortex / superior temporal gyrus (Fig. 2.5d, p = 0.042). We also observed significant

transfer in right auditory cortex / STG (p = 0.033) and a trending effect in right occipitotemporal

cortex (p = 0.060). No other regions showed significant transfer.

Together, these analyses suggest auditory cortex / STG as a candidate region in which fusion

may occur, particularly in the left hemisphere. Although it is important to emphasize that the

first two fusion tests were trending in this region (i.e., p < 0.10), the probability of observing a

trending or significant result for all three fusion tests in any region by chance was low (p = 0.046,

randomization test).

To ensure that we did not miss any areas with strong patterns of fusion that fell outside our

regions of interest, we re-ran the three fusion tests across cortex using a searchlight approach. These

searchlights did not reveal any regions that passed the first two fusion tests after correcting for
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multiple comparisons. However, the transfer test searchlight revealed two large clusters in bilateral

inferior temporal cortex, as well as smaller clusters in right auditory cortex (Heschl’s gyrus) and

frontal, occipital, and parietal regions (Fig. 2.6, Section 2.3.3). These results suggest that, after

training, sensory stimuli and learned cues that evoke expectations about those stimuli drive neural

representations in a common manner throughout cortex.

Anatomical region Hemi Cluster size min(p) Coordinates (x y z)
Lingual Gyrus L 1349 0.011 52 19 32
Occipital Fusiform Gyrus R 1053 0.012 28 25 34
Paracingulate Gyrus R 134 0.025 40 90 43
Lateral Occipital Cortex L 87 0.021 69 28 48

33 0.029 62 31 45
25 0.041 61 18 33
12 0.038 59 30 53

Heschl’s Gyrus R 70 0.032 18 54 43
Precentral Gyrus L 34 0.040 76 61 42
Middle Frontal Gyrus R 32 0.034 24 78 48

29 0.029 18 72 52
Lateral Occipital Complex R 28 0.037 18 34 58
Superior Temporal Gyrus R 27 0.040 19 60 28
Occipital Pole R 22 0.040 35 18 39
Central Opercular Cortex L 17 0.030 66 57 48
Posterior Cingulate Gyrus L 14 0.029 48 45 42

11 0.041 50 38 52
Frontal Pole R 12 0.041 30 88 39

Table 2.1: Transfer test searchlight results. Each line describes a cluster of significant voxels (cor-
rected for multiple-comparisons) and the coordinates and location of the voxel with the minimum
p-value in that cluster

2.4 Discussion

This study provides evidence that observers incorporate expectations into perceptual processing

by fusing them with sensory inputs. Conflicting sensory and expectation cues led to a specific

pattern of behavioral deficits in perceptual decision-making, consistent with fusion models of cue

integration in which feature estimates from cues are weighted by their precision. Pattern classifiers

trained to perform an analogous set of discriminations based on neural activity in left auditory

regions displayed a similar pattern of performance. These results provide evidence that fusion is

instantiated at the neural level and suggests a computational mechanism by which expectations

enhance the discriminability of perceptual representations (Brandman and Peelen, 2017; Hindy et

al., 2016; Kok et al., 2012).

Note that while we did not observe a decrease in mean bold activity in auditory cortex, as
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observed in some other studies in regions which show enhanced discriminability of congruently cued

stimuli (e.g., Kok et al., 2012), these results are not incompatible with proposals that expectations

sharpen neural representations (de Lange et al., 2018; Kok et al., 2012). Indeed, by analogy, highly

successful models of visual attention marry mechanisms which can sharpen neural representations

with inhibitory dynamics that maintain constant levels of overall neural activity (Reynolds and

Heeger, 2009).

Previous work in multisensory integration and cue combination has demonstrated that humans

can fuse highly stable cues that are genetically programmed or acquired over a lifetime of experience

(Alais and Burr, 2004; Ban et al., 2012; Dekker et al., 2015; Ernst and Banks, 2002; Murphy et al.,

2013; Nardini et al., 2010). In particular, superior temporal gyrus and left auditory cortex have

been shown to be sensitive to the conjunction of highly familiar visual and auditory cues (e.g. video

and audio of a person speaking, Callan et al., 2003; Hein et al., 2007; Kreifelts et al., 2007; Miller

and D’Esposito, 2005). Here we show that the human brain flexibly leverage similar computational

principles to integrate newly predictive information. This might explain how humans deploy recently

learned environmental regularities in the service of faster and more accurate perceptual judgments

(e.g., Esterman and Yantis, 2010; Turk-Browne et al., 2010). Whether similar learning mechanisms

govern both the rapid emergence of fusion in adults and the slower development of cue integration

in children remains an intriguing and open question.

The present work has several limitations that should encourage further investigation. First, we

explored fusion for only one type of feature: the gender of face stimuli. Future work could examine

whether the present findings generalize to other features and feature-selective cortical areas. Second,

while we did not observe any evidence for fusion in ventral visual regions, this absence of an effect

should be interpreted with caution because classification performance in these regions was generally

poor. This may be driven in part by less clear topography for identity-level information in these

regions, in contrast with the tonotopic organization of auditory cortex. Alternate cover tasks that

require more explicit judgements of face identity, as in previous work (Contreras et al., 2013; Kaul

et al., 2011), may provide sufficient SNR to reveal clear patterns of discrimination performance.

Bayesian inference provides a computational account of how expectations and sensory informa-

tion interact in perception. The mechanism by which this integration is accomplished is an active

area of investigation and is likely to depend on the type of expectation under consideration. For

example, expectations may be embedded in the structural organization of cortex, or actively applied

in the form of input from other brain regions (de Lange et al., 2018). Recent work suggests that

expectations may be generated by the hippocampus when they depend on recently learned arbi-
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trary associations (Hindy et al., 2016; Kok and Turk-Browne, 2018), raising the possibility that the

signatures of fusion we observe in auditory cortex may depend on hippocampal input.

2.5 Methods

2.5.1 Subjects

Forty-eight subjects participated in Experiment 1 (28 female, mean age 19.6). Sixty subjects (37

female, mean age 19.5) participated in Experiment 2. Thirty-two subjects (20 female, mean age 21.8)

participated in Experiment 3. All subjects had normal or corrected-to-normal vision and provided

written informed consent to a protocol approved by the Princeton IRB.

2.5.2 Stimuli

Visual stimuli consisted of 41 gender-morphed face stimuli (Zhao et al., 2011). Stimuli were generated

by interpolating features between a composite male face and a composite female face. The gender

of the faces was coded using an arbitrary numerical reference scheme ranging from -1 to 1 in 0.05

increments, with -1 denoting the composite male face and 1 denoting the composite female face.

Faces were presented centrally at fixation and spanned 4◦ of visual angle. Analysis of behavior from

experiment 1 revealed that a large central proportion of this stimulus space was perceptually uniform.

Stimuli drawn from this range were subsequently used for experiments 2 and 3 (see ‘Experiment 1

Procedure’, below).

Auditory stimuli consisted of 41 pure tones corresponding to musical notes ranging from D1 to

B[7 (36.7 to 3,951 Hz) in whole-step intervals. This tone space is perceptually uniform according

to the MIDI pitch standard. The 41 tones were also assigned a numerical reference ranging from

-1 to +1 in 0.05 increments. For all experiments, the tone-face mapping was counterbalanced such

that higher frequency tones were mapped to more masculine faces for half of the subjects and to

more feminine faces for the other half of subjects. The amplitude of the tone stimuli was adjusted

to correct for increasing subjective loudness with increasing pitch.

2.5.3 Experiment 1

In experiment 1, we exposed subjects to a linear mapping between the face and tone spaces and

tested if this association could bias behavior.
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Subjects performed 325 trials of a delayed estimation task (Fig. 2.1a). On each trial, after

being presented with a tone-face pair, subjects had to morph a second face stimulus to match the

gender value of the face they had just seen as closely as possible. Subjects morphed the face by

dragging a mouse cursor to the left or right edge of the screen, which either smoothly incremented or

decremented the gender value of the face at the center of the screen. If a subject morphed the face

to the edge of the gender space while the cursor was still at the screen edge, then morphing began

to reverse direction in gender space. After identifying a desired face for their response, subjects

halted morphing by returning their cursor to the center of the screen and submitted their response

by pressing the space bar.

The first 246 trials of this task constituted a training phase in which the tones were perfectly

predictive of the faces and subjects received feedback on their performance. Subjects received

feedback in the form of points. To encourage precision, points increased logarithmically as error

approached zero, up to a maximum of value of 2,000. Negative points were awarded for errors

greater than 0.30 units in gender space (6 steps in the 41-step space). Each tone-face pair was

presented six times. Trial order was generated randomly for each subject.

Subjects then completed two test phases (41 trials each) during which they no longer received

feedback on their performance. During the first test phase, the tones remained perfectly predictive

of the faces. During the second test phase, the mapping between tones and faces was randomly

shuffled for each subject such that tone conveyed no information about the subsequent face. Within

each test phase, each tone and face stimulus was presented once. Trial order was randomly generated

for each subject.

Analysis of biases in subject’s reports during the training and first test phase revealed that a

large proportion of the face stimulus space was approximately perceptually uniform. Across the

interval from -0.7 to 0.7, mean absolute bias was 0.038 and the maximum absolute bias was 0.096,

or less than one and two steps in the 41-step space, respectively. Stimuli were therefore restricted to

this range in Experiments 2 and 3 to satisfy the assumptions of the independence and fusion models.

2.5.4 Experiment 2

In experiment 2, subjects were again exposed to a linear mapping between the tones and faces, and

subsequently performed a discrimination task designed to test whether tone and face information

were integrated in a manner consistent with fusion.

Subjects first completed 123 trials of a delayed estimation task identical to the training phase of
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experiment 1 (Fig. 2.1a). This corresponded to three exposures to each of 41 tone-face pairs. Trial

order was generated randomly for each subject.

Subjects next completed a gender discrimination task. On each trial, they were shown two tone-

face pairs and asked to report whether the gender value of the second face was more feminine than

the first (Fig. 2.2a). For the first pair, the tone continued to predict the gender of the face with 100%

validity. The gender space value of this first tone-face pair was randomly assigned to either 0.25,

0.20, 0.15, -0.15, 0.20, or 0.25 on each trial (‘g’ in Fig. 2.2b). For the second pair, however, the gender

value of the second tone and/or face was systematically manipulated in a manner that sometimes

corrupted the predictive validity of the tone (Fig. 2.2b): (1) On ∆Face trials, the second tone was

identical to the first, but the second face differed in gender from the first by some increment in gender

space. (2) On ∆Tone trials, the second tone differed in gender from the first by some increment in

gender space, but the second face was identical to the first. (3) On ∆Congruent trials, the second

tone and face differed from the first tone and face by the same increment in gender space (the second

tone on these trials was valid). (4) On ∆Incongruent trials, the second tone and face differed from

the first tone and face by equal but opposite increments in gender space.

We measured the sensitivity of subjects to increments in gender space for each of these four trial

types using separate staircases. Subjects were not told about the existence of the different trial types

or staircases. Subjects began the discrimination task with 41 trials of ∆Congruent trials. Gender

increments on each trial were selected using a Bayesian adaptive algorithm (Watson and Pelli, 1983)

to converge on the increment at which subjects were correct 75% of the time. The purpose of this

initial staircase was to avoid presenting invalid tones early on, which, coupled with the change in

task phase, may have cued subjects that the relationship between the tones and faces had changed.

Results from this staircase were not analyzed. After the initial 41 trials, five additional and separate

41-trial staircases began concurrently. Depending on the trial type, gender increments for the second

tone and face were drawn from increments determined by a ∆Face staircase, a ∆Tone staircase, a

∆Incongruent staircase, or one of two ∆Congruent staircases. Two ∆Congruent staircases were

included to increase the overall validity of the predictive relationship, although these staircases were

analyzed separately to equate statistical power across conditions. At the end of the staircasing

procedure, the five estimated just noticeable difference values (in gender space units) were converted

to sensitivity scores by taking their inverse (Ban et al., 2012).
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2.5.5 Experiment 3

In experiment 3, subjects were again exposed to a linear mapping between the tones and faces, and

subsequently participated in an fMRI experiment designed to identify regions supporting fusion.

The training task was identical to that used in experiments 1 and 2. Subjects underwent training

over the course of two days, completing 369 trials on the day prior to their scan and an additional

123 trials immediately before the scan.

In the scanner, subjects were exposed to individual tone-face pairs while performing an oddball

cover task that demanded attention to the tone and face stimuli. On each trial, subjects were

presented with a tone and then a face with latencies identical to the training task, except that

a second face never appeared for warping (Fig. 2.4a). Oddball trials occurred 18% of the time,

containing either two tones or two faces in rapid succession in place of the typical one tone and one

face. Subjects were asked to report the presence of oddballs with a button press and these trials

were discarded from further analysis.

Subjects completed eight fMRI runs of 98 trials each (18 oddball trials, 80 non-oddball). Non-

oddball trials consisted of eight different trial types (10 trials per condition), corresponding to the

cross of gender (male or female) by tone-face relationship (∆Face, ∆Tone, ∆Congruent, ∆Incongruent;

Fig. 2.4b). As in the behavioral experiment, we sought to measure the separability of gender repre-

sentations as a function of condition. Rather than fix discriminability (i.e., behavioral accuracy at

75%) and measure the distance in stimulus space required, here we fixed the distance of the tones and

faces in stimulus space and measured discriminability using multivariate pattern classifiers. Stimuli

labeled “male” had a gender value of -0.6 (with +/- 0.1 units of jitter), stimuli labeled “female” had

a gender value of 0.6 (with +/- 0.1 units of jitter), and neutral stimuli had a value of 0 (with +/

-0.1 units of jitter) in our gender coding scheme.

2.5.6 Image acquisition and analysis

Structural and functional MRI data were collected on a 3T Siemens Skyra scanner with a 16-

channel head coil. Structural data was acquired using a T1-weighted magnetization prepared rapid

acquisition gradient-echo (MPRAGE) sequence (1 mm isotropic). Functional data consisted of T2*-

weighted multiband echo-planar imaging sequences with 48 oblique axial slices aligned to the AC-PC

line acquired in an interleaved order (1,500 ms repetition time [TR], 40 ms echo time, 2 mm isotropic

voxels, 96 x 96 matrix, 192 mm field of view, 64° flip angle). Data acquisition in each functional

run began with 12 s of rest in order to approach steady-state magnetization. A B0 field map was
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collected at the end of the experiment.

The first four volumes of each functional run were discarded for T1 equilibration. Functional data

were preprocessed and analyzed using FSL (www.fmrib.ox.ac.uk/fsl), including correction for head

motion and slice-acquisition time, spatial smoothing (5-mm FWHM Gaussian kernel), and high-pass

temporal filtering (128-s period). Data were manually inspected for motion artifacts, spiking, and

low SNR.

Regions of interest (ROIs) were defined based on automated meta-analysis in Neurosynth (Yarkoni

et al., 2011) using “face” and “tone” as the search terms. ROIs were created by downloading statis-

tical images from Neurosynth and binarizing the images such that significant voxels had a value of

1. Clusters with greater than 100 voxels were saved as masks (Fig. 2.4c), registered to each subject’s

functional space, and then re-binarized.

Classifier analyses were calculated based on the output of a single trial GLM (Aly and Turk-

Browne, 2016; Hindy et al., 2016), which contained 98 task-related regressors: one for every trial

in the run, modeled as 1.5 s boxcars from fixation onset to mask offset. All regressors were con-

volved with a double-gamma hemodynamic response function. The six directions of head motion

were also included as nuisance regressors. Autocorrelations in the time series were corrected with

FILM prewhitening. Each run was modeled separately in first-level analyses. First-level parameter

estimates were registered to the participant’s T2 image.

Classifier analyses were performed using custom scripts in MATLAB. These multivariate analy-

ses were computed for each run and then averaged across runs (Aly and Turk-Browne, 2016). For

each subject, ROI, and condition (∆Face, ∆Tone, ∆Congruent, ∆Incongruent), we trained a reg-

ularized logistic regression classifier (penalty = 1) to distinguish patterns of parameter estimates

from individual “male” and “female” trials. Classifier performance was assessed using leave-one-out

cross-validation (train on 19 trials, test on one). The average classifier accuracy across folds and

runs was calculated separately for male and female test trials, and was converted to d-prime using

the formula z(hit) – z(false alarm), where correct female test trials were coded as hits and incorrect

male trials (i.e., labeled as female) were coded as false alarms. Two neural fusion metrics based on

these classifiers were computed for each subject and ROI:

M1 = d′∆Congruent −
√

(d′∆Face)
2 − (d′∆Tone)

2 (2.1)

M2 = d′∆Congruent − d′∆Incongruent (2.2)
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A third neural fusion metric was defined based on the ability of the classifier to generalize across

face and tone information. Specifically, within each run, classifiers were trained to discriminate male

and female trials from the ∆Face condition and tested on the ∆Tone condition, and vice-versa.

Generalization performance was averaged across these two folds and across runs.

The significance of each fusion metric for each ROI was assessed by computing the bootstrapped

distribution of the mean (resampling subjects with replacement). To combine across fusion tests

and control for multiple comparisons across ROIs, we also computed the probability that any of the

7 regions we investigated would display trending or significant effects for all three fusion tests by

chance. To do this, we repeated the entire classification and bootstrapping procedure 1000 times,

randomly permuting condition labels for each subject (e.g., all ∆Face trials could be relabeled

∆Incongruent), and recorded the number of instances in which at least one ROI displayed p-values

< 0.10 for all three fusion tests. This tested the null hypothesis that there was no meaningful pattern

of classification performance across the four conditions.

We additionally used searchlight analyses to compute the three neural fusion metrics across

cortex. The procedure was identical to that described above for the ROIs, except that parameter

estimates were registered to 2-mm MNI space and analyses were repeated for all 27-voxel cubes (3

x 3 x 3) centered on voxels in cortex according to the Harvard-Oxford structural atlas (Desikan

et al., 2006). Group analyses comparing each test to zero across subjects were performed using

random-effects nonparametric tests (as implemented by the ‘randomise’ function in FSL), corrected

for multiple comparisons with threshold-free cluster enhancement (Smith and Nichols, 2009).

2.5.7 Model-based predictions for independence and fusion

Predictions for the discriminability of the tone-face pairs under independence and fusion were gen-

erated as follows (following Ban et al., 2012; Murphy et al., 2013). Each model takes as input the

gender value of the two tones being discriminated (t1 and t2) and the gender value of the two tones

being discriminated (f1 and f2). Additionally, each model has two parameters: the noise in the

gender estimate from the face (σ2
face), and the noise in the gender estimate from the tone (σ2

tone).

The qualitative predictions from each model described in the text do not depend on these parame-

ters, except when σ2
face and/or σ2

tone are extremely large relative to the corresponding experimental

manipulations.

Under independence, the gender representation for each tone-face pair are Gaussian distributions

in a bivariate gender space. One axis corresponds to gender estimates derived from faces. The second
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axis corresponds to gender estimates derived from tones. The means µ and covariance matrix C of

these distributions are parameterized as follows:

µ1 =

f1

t1

 (2.3)

µ2 =

f2

t2

 (2.4)

C =

σ2
face 0

0 σ2
tone

 (2.5)

The axis of discrimination was taken as the line of optimal discrimination, i.e., the line passing

through the mean of both distributions. Each bivariate distribution is projected onto this axis,

resulting in two 1D Gaussian distributions with means µ′1 and µ′2 and variance σ2. D-prime is then

calculated as

d′ =
µ′1 − µ′2√

σ2
. (2.6)

Under fusion, gender representations are gaussians in a univariate gender space that reflects a

weighted average of face and tone information. The means µ of the two distributions are defined as:

µ1 = kfacef1 + ktonet1 (2.7)

µ2 = kfacef1 + ktonet1 (2.8)

Where kface and ktone sum to 1. Assuming optimal Bayesian inference and gaussian noise (Ernst

and Bülthoff, 2004), kface and ktone are:

kface =

1
σ2
face

1
σ2
face

+ 1
σ2
tone

(2.9)

ktone =

1
σ2
tone

1
σ2
face

+ 1
σ2
tone

(2.10)

The variance of each gender representation is equal to the sum of the variances of the constituent

face and tone estimates, multiplied by the square of their weights:
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σ2 = k2
faceσ

2
face + k2

toneσ
2
tone (2.11)

As before, d-prime is calculated as

d′ =
µ1 − µ2√

σ2
. (2.12)
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Chapter 3

Transformation of memories by

expectation

3.1 Abstract

Working memory is critical to cognition, decoupling behavior from the immediate world. Yet, it

is imperfect; internal noise introduces errors into memory representations. Such errors have been

shown to accumulate over time and increase with the number of items simultaneously held in working

memory. Here, we show that discrete attractor dynamics mitigate the impact of noise on working

memory. These dynamics pull memories towards a few stable representations in mnemonic space,

inducing a bias in memory representations but reducing the effect of random diffusion. Model-based

and model-free analyses of human and monkey behavior show that discrete attractor dynamics ac-

count for the distribution, bias, and precision of working memory reports. Furthermore, attractor

dynamics are adaptive. They increase in strength as noise increases with memory load and experi-

ments in humans show these dynamics adapt to the statistics of the environment, such that memories

drift towards contextually-predicted values. Together, our results suggest attractor dynamics miti-

gate errors in working memory by counteracting noise and integrating contextual information into

memories.
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3.2 Introduction

In this chapter we extend our focus from perception to working memory, our ability to maintain

information without direct sensory input. It allows us to decouple behavior from the immediate

world, serving as the substrate for planning and problem solving (Baddeley, 2003). Despite its

fundamental role in cognition, information in working memory is not stored with perfect fidelity.

Errors accrue over time (Pertzov et al., 2017; Rademaker et al., 2018; Shin et al., 2017; Zhang and

Luck, 2009) and with the number of items simultaneously held in working memory (Adam et al.,

2017; Bays et al., 2009; Fougnie et al., 2012; Luck and Vogel, 1997; van den Berg et al., 2012; Zhang

and Luck, 2008).

Theoretical work suggests that the impact of noise can be mitigated if memories are stored

using a finite set of stable states known as discrete attractors (Brody et al., 2003; Chaudhuri and

Fiete, 2016; Kilpatrick et al., 2013; O’Reilly et al., 1999; Renart et al., 2003). In such systems,

memory representations drift towards the attractor states. Once there, memories are stable and

therefore resistant to diffusive noise. However, this comes at the the cost of discretizing continuous

information, reducing precision and inducing bias into memory.

Here, we test whether the brain uses discrete attractor dynamics to mitigate the impact of

noise on working memory. By fitting a flexible dynamical systems model to data from individual

subjects, we estimate the forces governing the temporal evolution of working memory representations

in both humans and monkeys. We show that discrete attractor dynamics better explain behavior

than competing models of memory dynamics. Indeed, discrete attractor dynamics account for the

distribution, bias, and precision of working memory reports and the accumulation of error in memory

over time. Furthermore, these dynamics adapt to changes in context and memory load in a way

that minimize errors in working memory.

3.3 Results

3.3.1 Systematic error in memory increases with load and time

To understand the dynamics governing working memory representations, we examined the behavior

of humans (N=90) and monkeys (N=2) performing a delayed estimation task (Wilken and Ma, 2004,

Fig. 3.1a). Subjects were instructed to remember the color of 1 to 3 simultaneously-presented stimuli

located at different positions on the display (humans saw 1 or 3 items; monkeys saw 1 or 2). After

a variable memory delay, subjects reported the remembered color at a cued target location using a
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Figure 3.1: Memories cluster in a continuous working memory task. (A) Top: humans (N=90)
performed a color delayed-estimation task in which they reported the color of a spatially-cued sample
after a variable delay. Humans made their report by adjusting the hue of the response probe by
rotating a response wheel (black circle) using a mouse. We rotated the mapping between wheel
angle and color on each trial to avoid spatial encoding of color memories. Bottom: monkeys (N=2)
performed a similar task. A symbolic cue indicated which sample to report (top or bottom). Monkeys
reported a specific color value using an eye movement to a color wheel that was rotated on each
trial. (B) Distribution of angular error for humans (top) and monkeys (bottom). Error increased
with load and delay time. Gray lines = low load, blue lines = high load, solid lines = short delay,
dashed lines = long delay. Inset: Error is calculated as the angular deviation between the color of
the cued sample and the reported color in color space. (C) Non-uniform distribution of reported
colors for humans (top) and monkeys (bottom). Gray line shows the distribution of target colors.

continuous scale. Stimulus colors were drawn uniformly from an isoluminant circular color space.

We quantified error as the angular deviation between the target color and the subject’s report. As

expected (Adam et al., 2017; Bays et al., 2009; Fougnie et al., 2012; Luck and Vogel, 1997; Pertzov

et al., 2017; Rademaker et al., 2018; Shin et al., 2017; van den Berg et al., 2012; Zhang and Luck,

2008, 2009), the average absolute error increased as a function of delay and working memory load

in both humans and monkeys (Fig. 3.1b; humans (H): load, F (1, 89) = 147.23, p < 1× 10−15; delay,

F (1, 89) = 85.44, p = 1.17 × 10−14; load x delay, F (1, 89) = 13.92, p = 3.36 × 10−4, analysis of

variance; monkey W (W): load, p < 0.001; delay, p = 0.006; load x delay, p = 0.495, bootstrap;

monkey E (E): load, p < 0.001; delay, p = 0.009; load x delay, p = 0.303, bootstrap).

Despite the uniform distribution of target colors, the responses of both human and monkey

subjects were significantly non-uniform (Bae et al., 2015; Bae et al., 2014; Hardman et al., 2017;
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Pratte et al., 2017, Fig. 3.1c, humans and monkeys p < 0.001 against uniformity, Hodges-Ajne test;

p < 0.001 against target distribution, permuted Kuiper’s test). This was reflected in a significant

decrease in the entropy of the response distribution relative to the target distribution (H: 2.54 vs.

2.61 bits, t(89) = 13.90, p < 1 × 10−15, t-test; W: 2.61 vs. 2.65 bits, p < 0.001, bootstrap; E: 2.58

vs. 2.65 bits, p < 0.001, bootstrap). Responses clustered around specific colors, seen as peaks in the

response histogram (Fig. 3.1c). Clustering increased with delay time (F (1, 89) = 9.56, p = 0.003,

analysis of variance) and with memory load in humans (F (1, 89) = 5.45, p = 0.022; Fig. S3.1-2),

suggesting that clustering is the result of a load-dependent dynamic process that unfolds over the

course of encoding and the memory delay.

3.3.2 Attractor dynamics influence memory representations

Motivated by these results, we tested the hypothesis that discrete attractor dynamics underlie the

evolution of working memory representations. Attractor states can be conceptualized as local minima

in an energy landscape over mnemonic (color) space, such that memories drift towards nearby

attractors over time (Fig. 3.2a). These dynamics could provide a mechanistic explanation for the

observed clustering of memory reports.

To test for the existence of discrete attractors, we developed a model to characterize the dynamics

governing working memory representations. The model describes memory error as a combination

of diffusion from noise in the neural representation (Burak and Fiete, 2012; Compte et al., 2000;

Wimmer et al., 2014) and drift towards attractor states. Diffusion was quantified as a random walk

from the current location in mnemonic space with no bias (µ = 0) and a variance (σ2
L) that depended

on the number of colors presented (L = memory load). Discrete attractor dynamics were modeled

by fitting a function G(θ) that describes how a remembered color θ will drift as a function of its

current value (Fig. 3.2b). Positive drift values reflect a clockwise drift (to the right in Fig. 3.2b)

while negative values reflect a counterclockwise drift (to the left). Thus, attractors are points in

mnemonic space that 1) are fixed, such that they have no drift, and 2) pull nearby memories towards

themselves, indicated by a negative slope in the drift function (Fig. 3.2b, dashed lines). Subjects

displayed the same number and location of clusters in their distribution of memory reports regardless

of load condition (Fig. S3.2), so we assumed that the pattern of drift did not vary with load (i.e.

the shape of the function G(θ) was the same across loads). However, as with diffusion, the strength

of the drift was allowed to vary across memory load (i.e. G(θ) is scaled by βL).

Together, drift and diffusion define the temporal evolution of memories during the delay (Fig. 3.2c);
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describes how a memory will change based on its current state. Red arrows show the direction of
drift; attractors have converging drift (dashed lines). We estimated G(θ) for each subject using a
linear combination of von mises derivatives. (C) The simulated evolution of three color memories
during a hypothetical trial. Memory evolves over time according to the drift function (vector field)
and random noise. Each line indicates the temporal evolution of a remembered color under a different
realization of the noise process. Terms described in main text.

dynamics evolve according to the differential equation dθ = βLG(θ)dt+ σLN (0, dt). Previous work

has shown that reports of perceived colors are clustered, although clustering is greater for colors

held in working memory (Bae et al., 2015). To capture clustering and other sources of error (Bays

et al., 2011; Buschman et al., 2011) that emerge during encoding, inputs were first passed through

an encoding stage governed by a similar drift and diffusion process with the same drift function

G(θ). However, the strength of drift and diffusion during encoding was set independently by two

additional parameters (β∗L and σ∗L; see Methods for details). This allowed us to test for discrete

attractor dynamics during both encoding and the memory delay (Fig. 3.3). Finally, three addi-

tional terms in the model captured errors due to forgetting of memories (Zhang and Luck, 2008),

responses to non-targets (Bays et al., 2009), and noise introduced at decoding (see Methods for de-
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tails). Model parameters were estimated by maximizing the joint likelihood of the observed memory

reports across individual trials for each subject. Critically, the model did not assume attractor dy-

namics (Fig. 3.3a); when βL and β∗L are zero, memories are only influenced by diffusion, forgetting,

and responses to non-targets, as in previous models.
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Figure 3.3: Behavior is best explained by attractor dynamics during encoding and memory. (A)
Simulated memory trajectories from the best-fitting model for one subject. Left: The full dynamical
model includes drift towards attractor states during both encoding and memory. Reduced models
include drift only during encoding (middle) or memory (right). (B) AIC and BIC model weights
(normalized relative likelihood) for the full model compared with models with zero drift during
encoding (β∗ = 0) and memory (β = 0). Values indicate the probability that the given model is the
best model in the set Wagenmakers and Farrell, 2004.

Discrete attractor dynamics provide a better account of behavior than models in which memories

only diffuse randomly (Fig. 3.3). To demonstrate this, we compared the full model with drift

and diffusion to reduced models without drift towards attractor states during encoding or memory
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(β∗ = 0 or β = 0, Fig. 3.3a). Three model comparison statistics (AIC, BIC, and cross-validated

likelihood) all indicated that the full model performed best (Fig. 3.3b and Tables S3.1 and S3.2; H:

relative likelihood of full model = 1.00 (AIC) and 0.98 (BIC); W: 1.00 and 0.80; E: 1.00 and 1.00).

Thus, both the encoding and delay periods are characterized by drift of memories towards attractor

states.

As seen in previous work (Bae et al., 2015; Bae et al., 2014), memory reports clustered at certain

points in color space, and the bias and precision of reports vary systematically around points of

peak clustering. Here, we show that the discrete attractor dynamics explain these variations. First,

discrete attractor dynamics predict a clustered distribution of memory reports because memories

tend to accumulate at attractor states. Accordingly, colors near attractor states identified by each

subject’s best-fit model were reported more frequently than average (Fig. 3.4a, H: t(89) = 43.49,

p = 9.54 × 10−62; W: p < 0.001, bootstrap; E: p < 0.001, bootstrap). The distribution of memory

reports predicted by each subject’s best-fit model provides an excellent fit of the empirically-observed

distribution of memory reports (Model: Fig. 3.4b, H: r(70) = .909, p = 2.57×10−28; W: r(70) = .741,

p = 9.93× 10−14; E: r(70) = .934, p = 4.21× 10−33, Pearson’s r).

Second, discrete attractors explain bias in working memory reports. Memories of a particular

target color will consistently drift towards the closest attractor state, inducing systematic bias in

subjects’ reports. This is evident in subjects’ behavior: memories for target colors counter-clockwise

to an attractor location tended to drift clockwise, while targets clockwise to an attractor tended

to drift counter-clockwise (Fig. 3.4C; H: mean slope -0.40 less than zero, t(89) = −12.60, p =

1.73 × 10−21, t-test; W: -0.59, p < 0.001, bootstrap; E: -0.73, p < 0.001, bootstrap). Model-free

analyses showed similar effects. The peaks in the response histogram provide independent estimates

of attractor locations. Aligning the bias around peaks in the response histogram reveals a similar

pattern with a negative slope (Fig. S3.3; Bae et al., 2015; Bae et al., 2014) . Furthermore, the model

provides a good qualitative fit to the pattern of bias across color space (Fig. 3.4D). The model’s

predicted pattern of biases for each target color was highly correlated with the empirically observed

pattern of biases in both human and monkeys (H: r(88) = .939, p = 1.41× 10−42; W: r(58) = .864,

p = 6.95× 10−19; E: r(58) = .850, p = 8.13× 10−18, Pearson’s r).

Third, discrete attractors explain the precision of working memory reports. Memories near

attractors are more stable: as diffusive noise drives a memory representation away from an attractor,

drift will pull it back towards the attractor, resulting in a narrow response distribution. For both

humans and monkey subjects, the standard deviation (SD) of memory reports was lower for targets

near attractors identified by each subject’s best-fit model (Fig. 3.4E; H: ∆SD=-1.96, t(89) = −4.90,

37



-50

0

50

-50

0

50

-20

0

20

0

5

10-3

0

5

10-3

human monkey W monkey E

bi
as

 (m
ea

n
 re

sp
on

se
 - 

ta
rg

et
) empirical model

-50

0

50

-50

0

50

-100

0

100

-100

0

100

-100

0

100

-100

0

100

de
g 

fro
m

 m
ea

n 
re

po
rt

em
pi

ric
al

m
od

el
target color target color target color

target color target color target color

fit attractor

reported color reported color reported color

de
ns

ity

BA

DC

FE

0

10

20

SD
 o

f r
ep

or
ts

(b
as

el
in

e 
co

rre
ct

ed
)

target color

reported color

bi
as

target color

de
ns

ity

-10

0-50 50

0-50 50

0-50 50

hum
an

m
onkey E

m
onkey W

T

empirical
model

3

4

5

10-3

0

4

10-3

0

20

-20

T

2

0

0.01

density
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p = 4.20× 10−6, t-test; W: -2.96, p < 0.001, bootstrap; E: -5.59, p < 0.001, bootstrap). Model-free

analyses again showed similar effects: SD was significantly reduced at the peaks in the response

histogram (Fig. S3.3. As with bias, discrete attractor dynamics predict the pattern of precision

across color space (Fig. 3.4F). The model’s predicted pattern of precision as a function of target

color was correlated with the empirically observed values in both human and monkeys (Fig. 3.4F,

H: r(88) = .370, p = 3.27 × 10−4; W: r(58) = .377, p = 0.003; E: r(58) = .630, p = 6.88 × 10−8,

Pearson’s r).

We can exclude several other possible explanations for the non-uniform distribution of memory

reports. One alternative explanation is that clustering is driven by subjects guessing with a biased
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distribution on a subset of trials. However, if true, then bias would not display an ‘attractive’

positive-to-negative transition at cluster peaks and precision would not depend on the identity

of the item in memory (Fig. S3.4). A second alternative is that clustering could be driven by a

non-linear mapping between the stimulus space chosen by the experimenter and the subject’s true

perceptual space. However, such a model predicts the opposite pattern of bias across color space

(Fig. S3.5).
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The discrete attractor model also predicts how errors in working memory evolve over time. First,

the discrete attractor model accurately recapitulates the increase in error over the delay. To measure

the change in mean error over the delay, we measured error for memory delays ranging from 1 to

7 seconds (Experiment 1b; Fig. S3.6a; 120 new human subjects). The discrete attractor model

provided a good fit to the increase in error with memory delay (Fig. S3.6).

Second, the discrete attractor model makes the specific prediction that memories of different

target colors are expected to accumulate error at different rates. Attractors are ‘stable fixed points’

because they counteract perturbations of memory due to random noise. Perturbations are corrected

by drift back towards the stable fixed point. Because this process occurs continuously over time,

memories of target colors near stable fixed points are not only more precise overall (i.e., as in

Fig. 3.4E), but also accumulate error at a relatively slow rate over time (Fig. 3.5a). In contrast, target
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colors near ‘unstable fixed points’ accumulate error relatively quickly over time because random

perturbations away from these points are exacerbated by drift away from the unstable fixed point

(Fig. 3.5a). To test this prediction, we first identified stable and unstable fixed points for each

subject by identifying target colors with attractive bias (zero with a negative slope) or repulsive

bias (zero with a positive slope). We then calculated how much error increased on long delay trials

relative to short delay trials for target colors near stable and unstable fixed points. For both humans

(p = 0.036, bootstrap) and monkeys (W: p < 0.0001, E: p = 0.024, bootstrap), error increased more

over time for target colors near putative unstable fixed points (Fig. 3.5b).

3.3.3 Attractor dynamics strengthen with load
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Figure 3.6: Drift and diffusion increase with memory load. Experiment 1a maximum likelihood pa-
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all parameters are rates (change per second); dynamics during encoding evolve over a fixed period of
time (simulated as 1 second), while memory dynamics evolve over the memory delay, which varied
from trial to trial. * p < 0.05, ** p < 0.01, *** p < 0.001, bootstrap.

The error-correcting properties of attractors may be especially critical when memory load is

high. High memory load decreases the magnitude of neural responses (Buschman et al., 2011),

which is thought to render memories more susceptible to noise and, therefore, increase diffusion

(Bays, 2015; Burak and Fiete, 2012). Indeed, as estimated by the model fits to experiment 1a,

diffusion during the memory delay increased with memory load (Fig. 3.6a, σ2
L, H: p = 0.001; W:
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p = 0.021, E: p = 0.010, bootstrap) although changes during encoding were mixed (Fig. 3.6b, σ2∗
L ,

H: p < 0.001; W: p = 0.459, E: p = 0.100, bootstrap). Consistent with the theory that attractor

dynamics compensate for diffusion, we saw a commensurate increase in drift during the memory

delay (Fig. 3.6c, βL, H: p = 0.002; W: p = 0.026, E: p = 0.026, bootstrap) and during encoding

(Fig. 3.6d,β∗L, H: p = 0.001; W: p = 0.024, E: p = 0.009, bootstrap). Similarly, two model-free

measures of drift, clustering of responses and mean absolute bias, increased with load (Fig. S3.1).

Note that although the rate of drift and diffusion during memory is less than that during encoding,

their effects accumulate over the course of the memory delay.

3.3.4 Attractor dynamics are shaped by experience

While discrete attractors compensate for diffusion, they also induce systematic error into working

memory. Thus, there is a trade-off between the finite error caused by drifting toward an attractor

and the ever-increasing error associated with diffusion. To test whether discrete attractors improved

overall performance, we simulated memory dynamics for the full discrete attractor model (‘drift

+ diffusion’) and from the same model with encoding and memory drift set to zero (‘diffusion’,

β = β∗ = 0). Thus, we can ask how memory accuracy would change if diffusion were held constant

and we manipulated only the presence or absence of discrete attractor states. As shown in Fig. 3.7a,

the two models accumulate error at different rates over time. Initially, the mean absolute error is

greater in the drift + diffusion model due to memory corruption by drift towards attractor states

during encoding and the early delay period (p < 0.05 for t < 11s, bootstrap). However, discrete

attractors also counteract diffusive noise and so, as the delay increases, the drift + diffusion model

performs significantly better than the diffusion model (p < 0.05 for t >= 33s, bootstrap), with the

crossover in performance occurring at t ∼ 17s. Thus, attractor dynamics have a greater impact the

longer information is held in working memory.

Discrete attractor dynamics are most beneficial when they adapt to the current context. For

example, the statistics of many visual features in the real world are not uniform across perceptual

space (including color Yendrikhovskij, 2001). In this case, errors can be reduced if attractor states

reflect the statistics of the environment, such that attractors occur at the location of common

stimuli. To demonstrate this, we tested the performance of the full discrete attractor model in

different environments. Environments varied in the proportion of target colors drawn from within

10 degrees of an attractor. For example, when 50% of targets were drawn from nearby an attractor,

the ‘drift + diffusion’ model significantly reduced working memory error for all t (Fig. 3.7a, red
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trace). Parametrically varying the proportion of biased colors revealed that discrete attractor states

tuned to the statistics of the environment reduced memory error, even with modest biases in the

color distribution (Fig. 3.7b). These results suggest that, in order to minimize working memory

errors, attractor dynamics should adapt to the statistics of the current environment.

To test whether memory dynamics adapt to context, we collected data from 120 additional human

subjects in a continuous working memory task with a biased stimulus distribution (Experiment 2,

Fig. 3.7c). During this task, the statistics of the environment were such that half of all stimuli were

drawn from one of four common colors (randomly chosen for each subject) while the other half were

drawn from a uniform distribution.

Both model-free and model-based analyses suggest that participants developed attractor states

at the common color locations. First, attractor states, as identified by fitting the dynamical model,

were significantly more likely to occur at the location of common colors than expected by chance

(Fig. 3.7d, p < 0.001, randomization test, model fits were limited to trials in which the target color

was drawn from a uniform distribution). Second, consistent with the accumulation of memories at

attractor states, subjects were significantly more likely than chance to report common colors, even

on the half of trials when the target was drawn from a uniform distribution (Fig. S3.7a, p < 0.001,

randomization test). Third, over the course of the experiment, the pattern of bias around common

colors became more consistent with attractor states. As shown in Fig. 3.4c, attractors pull in nearby

memories, resulting in a positive-to-negative transition in bias. The more negative the slope, the

stronger the attractor. Attraction towards common colors increased with experience: the slope of

bias around common colors was significantly more negative during the last third of trials than during

the first third (Fig. 3.7e, p = 0.0138, bootstrap).

To determine if changes in bias were driven by differences in encoding or memory dynamics,

we analyzed short memory delay and long memory delay trials separately. If learned biases toward

common colors manifest during encoding, then the bias slope should become more negative for

both short and long trials. In contrast, if biases manifest during memory, then the change in bias

should be especially strong for long delay trials because the biases in memory dynamics have more

time to accumulate. Non-parametric regression revealed a main effect of delay length on bias slope

(p = 0.026) modulated by a delay x epoch (first or last third of trials) interaction (p = 0.039). The

bias slope around common colors on short delay trials did not differ between the first third and last

third of trials (Fig. 3.7f, p = .384, bootstrap) but became significantly more negative for long-delay

trials (p = .006, bootstrap). Directly comparing the two delay conditions, bias slope was more

negative for long-delay trials than short delay trials in the last third of trials (p = .0411, bootstrap).
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These results suggest that learning modified dynamics during memory rather than encoding.

To ensure that these results were not due to subjects strategically reporting common colors based

on explicit knowledge of the stimulus distribution, we analyzed debriefing data collected from the

participants in Experiment 2 and 1b. Subjects were not better than chance at identifying whether

they were exposed to a biased or uniform stimulus distribution (see Methods for details). Further-

more, participants in Experiment 2 displayed the same pattern of results regardless of whether or

not they correctly reported that the stimulus distribution was biased during debriefing (Fig. S3.8).

Finally, if attractors emerge at common color locations, then this should alter the distribution

of reported colors over the course of the experiment. Indeed, we found the clustering of memory

reports across subjects decreased from the first third to the last third of trials (2.62 to 2.63 bits,

p < 0.001, randomization test; Fig. S3.7b. This is consistent with a strengthening of attractors

at the contextually-predicted locations, which were uncorrelated across subjects. However, it is

important to note that, although weaker, clustering is still partially evident at baseline locations

in the last third of trials (Fig. S3.7b), and the slope of bias around these baseline locations did

not change in strength between the first and last third of the experiment (p = 0.5701, bootstrap).

This suggests that the learning rate governing changes in the dynamics is low, ideal for extracting

statistical regularities (McClelland et al., 1995).

3.4 Discussion

Our results highlight the dynamic nature of working memory representations. Using both model-

based and model-free analyses, we show that two forces drive the evolution of visual representations

during encoding and maintenance: 1) random diffusion and 2) drift towards discrete attractor states.

Together, these forces provide a parsimonious explanation of the distribution, bias, and precision of

memory reports and the accumulation of error in memory over time. These results build on previous

models that do not explain why errors in working memory differ as a function of the content (e.g.,

Compte et al., 2000; Fougnie et al., 2012; van den Berg et al., 2012) or how memory representations

dynamically evolve (e.g., Bae et al., 2015).

Previous psychophysical, theoretical, and neurophysiological work has shown noise in neural

activity can cause memories to diffuse away from their original representation, leading to errors in

working memory (Burak and Fiete, 2012; Compte et al., 2000; Schneegans and Bays, 2018; Wimmer

et al., 2014). Our results suggest attractor dynamics within mnemonic space can counteract this noise

by pulling memories towards a few stable representations. Consistent with previous theoretical work
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(Brody et al., 2003; Chaudhuri and Fiete, 2016; Kilpatrick et al., 2013; O’Reilly et al., 1999; Renart

et al., 2003), we provide experimental evidence that the stability of representations at attractors

limits the effect of random diffusion. Furthermore, the fact that discrete attractors are evolutionarily

conserved across monkeys and humans emphasizes the benefits of error-correction. Indeed, this may

be a general phenomenon in the brain: attractor dynamics are thought to minimize the impact of

noise in long-term, associative memory (Hopfield, 1982, 1984 and in decision making Inagaki et al.,

2017; Piet et al., 2017).

From an information-theoretic perspective, working memory can be conceptualized as a band-

limited information channel (Koyluoglu et al., 2017). In this framework, discrete attractors compress

working memory representations by discretizing the continuous mnemonic (color) space. Discretiza-

tion reduces the information needed to encode a memory, allowing it to be more accurately stored

in a noisy, band-limited system (Koyluoglu et al., 2017; Nassar et al., 2018). This is particularly

important when storing multiple items in working memory. Increasing the number of items in work-

ing memory leads to interference between items, reducing memory accuracy (Almeida et al., 2015;

Buschman et al., 2011; Pertzov et al., 2017). Consistent with this, we observed an increase in dif-

fusive noise as more items are held in working memory. However, drift also increased in strength,

compensating for the increase in noise. In other words, strengthening discrete attractor dynamics

increases compression of memories; this reduces the fidelity of memories as they are further dis-

cretized, but also makes them more robust to noise and interference. Note that this increase in

attractor strength with load cannot be explained by interference among items because item identity

is random and so any such interactions would lead to random, not systematic, biases in memory.

Several neural mechanisms might account for the increase in attractor strength with load, including

increased drive into the network (Cohen et al., 1990; Wang et al., 2018) or changes in f-I gain via

neuromodulation (Musslick et al., 2018; Servan-Schreiber et al., 1990).

Finally, our results suggest attractor dynamics adapt to context: attractors emerged at the posi-

tion of commonly occurring stimuli. The relatively slow rate of change in dynamics (over hundreds

of trials) is consistent with theoretical work that suggests such learning could be driven by synaptic

plasticity (Kilpatrick, 2018). Indeed, such a mechanism with a slow learning rate is ideal for extract-

ing the statistical regularities of the environment. Intriguingly, we found encoding dynamics adapted

to changes in the environment more slowly than memory dynamics. This raises the possibility that

encoding and memory dynamics may rely on different neural mechanisms.

By moving to reflect the statistics of the environment, attractors will pull memories towards

likely stimuli. In this way, attractor dynamics act to integrate prior beliefs with noisy stimulus

45



information. This process is analogous to Bayesian inference applied over time. At each timestep in

memory, drift applies the prior (embedded in the attractors) to each item in memory, which reflects

the posterior of the previous timestep plus random noise. Thus, as time in working memory increases

(and stimulus information diffuses), memory representations drift towards prior expectations. Such

a process could constitute the mechanism by which sensory history influences working memory

(Akrami et al., 2018; Papadimitriou et al., 2015; Papadimitriou et al., 2017). Beyond working

memory, attractor dynamics could be a neurally-plausible mechanism for integrating prior beliefs

with sensory information in other cognitive behaviors, such as decision making and perception.

3.5 Methods

3.5.1 Subjects

Thirty-three human subjects participated in Experiment 1a at Princeton University. Seventy-three

additional subjects participated in an online version of Experiment 1a via Amazon Mechanical Turk

(https://www.mturk.com). One-hundred twenty-five subjects participated in Experiment 1b via

Amazon Mechanical Turk. One-hundred fifty-five subjects participated in Experiment 2 via Amazon

Mechanical Turk. We screened subjects for a minimum of engagement in the task by estimating

their probability of random guessing in the task using 3-component mixture model (Bays et al.,

2009). Subjects with an estimated guess rate greater than 20% across all trials were excluded from

further analysis, yielding thirty laboratory subjects and sixty online subjects for Experiment 1a,

one-hundred twenty online subjects for Experiment 1b, and one-hundred twenty online subjects for

Experiment 2. This threshold of 20% was set independently based on analysis of a separate pilot

cohort of online subjects (N = 57). Subjects recruited online via Mechanical Turk have previously

been used to study working memory and have performance comparable to lab subjects (Brady and

Alvarez, 2011, 2015). We observe similar qualitative behavior between online and lab subjects

(Fig. S3.9) and report their behavior together in the main text. All subjects attested that they had

normal or corrected-to-normal vision. We confirmed that subjects had normal color vision using the

Ishihara Color Blindness Test. Subjects provided informed consent in accordance with the Princeton

University Institutional Review Board.

Two adult male rhesus macaques (8.9 and 12.1 kg) performed the Experiment 1a in accordance

with the policies and procedures of the Princeton University Institutional Animal Care and Use

Committee.
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3.5.2 Experiment 1a - humans

For the laboratory version of Experiment 1a we presented stimuli on a CRT monitor positioned at

a viewing distance of 60 cm. We calibrated the monitor using an X-Rite i1Display Pro colorimeter

to ensure accurate color rendering. During the experiment, participants were asked to remember

the color and spatial location of either 1 or 3 square sample stimuli. The color of each sample was

drawn from 360 evenly spaced points along an isoluminant circle in CIE L*a*b* color space. This

circle was centered at (L = 60, a = 22, b = 14) and the radius was 52 units. Colors were drawn

pseudorandomly, with the caveat that colors presented on the same trial had to be at least 22◦

apart in color space. The samples measured 2◦ of visual angle (DVA) on each side. Each sample

could appear at one of eight possible spatial locations. All possible locations had an eccentricity of

4.5 DVA and were positioned at equally spaced angles relative to central fixation (0, 45, 90, 135,

and 180◦ clockwise and counterclockwise relative to the vertical meridian). The dimensions of the

stimuli for the online experiment were defined by pixels rather than degrees of of visual angle. The

samples had an edge length of 30 pixels and were presented at an eccentricity of 170 pixels.

Participants initiated each trial by clicking the mouse and by fixating a cross at the center of

the screen (Fig. 3.1a). After 500 ms of fixation, one or three samples (the load) appeared on the

screen. The samples were displayed for 200 ms and then were removed from the screen. Participants

then experienced a memory delay of 1 second or 7 seconds, after which a response screen appeared.

The response screen consisted of the outline of a square at one of the previous sample locations

(the probe sample) and a response interface consisting of a circle on a ring. Participants used the

mouse to drag the circle around the ring, which changed the color of the probe sample. The angular

position of the circle on the ring corresponded to a particular angle in color space. The mapping

between circle position and color space was randomly rotated on each trial to exclude the use of

spatial memory. We instructed participants to adjust the color of the probe sample to match the

color of the sample that had previously appeared at that location as closely as possible. We told

participants that accuracy was more important than speed but that they should respond within a

few seconds. There was no time limit on the response. All human participants completed 200 trials.

We monitored the eye position of the lab participants using an Eyelink 1000 Plus eyetracking

system (SR Research). Participants had to maintain their gaze within a 2◦ circle around the central

cross during initial fixation and sample presentation, or else the trial was aborted and excluded from

analysis.
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3.5.3 Experiment 1a - monkeys

We presented stimuli on a Dell U2413 LCD monitor optimized for color rendering. The monitor was

positioned at a viewing distance of 58 cm. We calibrated the monitor using an X-Rite i1Display Pro

colorimeter to ensure accurate color rendering. Sample colors were drawn from 64 evenly spaced

points along an isoluminant circle in CIE L*a*b* color space. This circle was centered at (L = 60, a

= 6, b = 14) and the radius was 57 units. Slightly different color wheels were used for the humans

and the monkeys to accommodate the gamut of the different monitors used in each experiment.

Nevertheless, colors corresponding to the same angle in each color wheel are extremely similar in

appearance. The edges of the samples measured 2◦ of visual angle. Each sample could appear at

one of two possible spatial locations: at 5 DVA eccentricity from fixation and 45◦ clockwise and

counterclockwise from the horizontal meridian.

We adapted Experiment 1a so that it could be performed by non-human primates. The animals

initiated each trial by fixating a cross at the center of the screen. After 500 ms of fixation, one or

two samples appeared on the screen. The samples were displayed for 500 ms, followed by a memory

delay of 500 ms or 1500 ms. Next, a symbolic cue was presented at fixation for 300 ms. This

cue indicated which sample (top or bottom) the animal should report in order to get juice reward.

The response screen consisted of a ring 2◦ thick with an outer radius of 5◦. The animals made

their response by breaking fixation and saccading to the section of the color wheel corresponding

to their report. This ring was randomly rotated on each trial to prevent motor planning or spatial

encoding of memories. The animals received a graded juice reward that depended on the accuracy

of their response. The number of drops of juice awarded for a response was determined according a

circular normal (von mises) distribution centered at 0◦ error with a standard deviation of 22◦. This

distribution was scaled to have a peak amplitude of 12, and non-integer values were rounded up.

When response error was greater than 60◦, no juice was awarded and the animal experienced a short

time-out of 1 to 2 seconds. Responses had to be made within 8 seconds; in practice, this restriction

was unnecessary as response times were on the order of 200-300 ms. We analyzed all completed

trials (trials on which the animal successfully maintained fixation and saccaded to the color wheel,

regardless accuracy). Monkey W completed 15,787 trials over 26 sessions and Monkey E completed

16,601 trials over 17 sessions.

We monitored the eye position of the animals using an Eyelink 1000 Plus eyetracking system

(SR Research). The animals had to maintain their gaze within a 2◦ circle around the central cross

during the entire trial until the response, or else the trial was aborted and the animal received a
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brief timeout. Trials during which the animal broke fixation were excluded from analysis.

3.5.4 Experiment 1b

The stimuli and procedures were similar to those for the online version of Experiment 1a, except

that participants were presented with two samples on every trial and the delay varied continuously

between 1 seconds and 7 seconds. Model predictions (Fig. S3.6) were generated from the best fitting

model. As in Experiment 1a, the full model provided the best fit to the data (mean increase in

cross-validated log-likelihood over worst-fitting model, full: 7.45, β = 0: 7.41, β∗ = 0: 0.20).

3.5.5 Experiment 2

The stimuli and procedures for Experiment 2 (Fig. 3.7c) were similar to those for the online version

of Experiment 1a. We shortened the memory delays to 500 ms and 4000 ms to reduce the length of

the experiment. Participants saw 2 samples on each trial. Critically, the color of the samples were

no longer always drawn uniformly from the circular color space. Rather, for each sample, there was

a 50% chance that the color of that sample would be drawn from a biased distribution (Fig. 3.7c).

This biased distribution consisted of four equally-spaced clusters of common colors. Each cluster

was 20◦ in width. Each participant was exposed to a unique set of common colors as the cluster

means were shifted by a single random phase for each subject.

3.5.6 Subject debriefing

Participants in Experiments 1b and 2 were presented with following debriefing question: “During

this experiment, some participants are shown target colors at random. Others are shown some colors

more often than others. Which group do you think you are in?”. The response options were “I was

shown all colors about equally often” or “I was shown some colors more often than others”. When

presented with this two-alternative forced choice at the end of the experiment, 49.2% of participants

in Experiment 2 correctly reported that the distribution of targets was biased, while 48.3% incorrectly

reported a uniform distribution of targets (3 participants abstained). We estimated the false alarm

rate for this question by analyzing responses of participants in Experiment 1b to the same question:

49.2% incorrectly reported a biased distribution, 50.0% reported a uniform distribution, 1 abstained.

The proportion of subjects reporting a biased distribution was not significantly different between

Experiments 1b and 2 (χ2(1) = 0.015, p = 0.902, chi-squared).
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3.5.7 Effects of load and time on mean error

Throughout the text, all t-tests are two-tailed and all randomization tests are one-tailed, unless

otherwise indicated.

We analyzed mean absolute error for human subjects using a 2x2 repeated measures ANOVA

with factors load, delay time, and their interaction. We analyzed each monkey’s data by fitting

the equivalent regression model to their mean error in each condition. We obtained bootstrapped

confidence intervals for each regression coefficient by re-sampling trials with replacement from each

monkey’s dataset and refitting the regression model on each iteration (1000 iterations). We also

used this method to analyze the effect of load and time on clustering and mean bias (Fig. S3.1), and

the effect of task epoch and time on bias slope (Fig. 3.7e-f).

3.5.8 Clustering metric

We observed that the distribution of reported hues θ̂ are clustered relative to the distribution of

target hues Θ. To quantify this phenomenon, we developed a simple clustering metric. This metric

relies on the fact that entropy is maximized for uniform probability distributions. In contrast,

probability distributions with prominent peaks will have lower entropy. Because the target hues are

drawn from a circular uniform distribution, the entropy of the targets H(Θ) will be relatively high.

If a subject’s responses are clustered, their entropy H(θ̂) will be relatively low. Taking the difference

of these two values yields a clustering metric C. Negative values of C suggest greater clustering:

C = H(θ̂)−H(Θ) (3.1)

where:

H(x) = −
360∑
x=1

f(x) log2 f(x)dx̂ (3.2)

To account for the fact that this estimate of entropy is biased, we subsampled the data such

that there was an equal number of trials in each condition. We estimated the pdf of the responses

f(θ̂) and the targets f(Θ) using kernel density estimation (Matlab CircStat toolbox, kernel width

= 10◦). Note that our goal was to quantify the clustering of reports for items in memory; random

guesses (Bays et al., 2009; Zhang and Luck, 2008) confound this analysis by contributing a uniform

component to the response distribution that varies systematically as a function of load and time. To

address this, we estimated the proportion of responses due to guessing using mixture models (Bays et
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al., 2009; Zhang and Luck, 2008) and removed a uniform component from the response distribution

f(θ̂) and the target distribution f(θ) equal in area to the guess rate and then renormalized each.

3.5.9 Bias and standard deviation of memory reports

To dissociate systematic and unsystematic sources of error in memory, we calculated the bias and

standard deviation of memory reports across color space. We used 4◦ bins for humans and 6◦

bins for monkeys to accommodate their coarser sampling of color space (64 target colors). Bias

refers to the distance between the the target color and the mean reported color. We calculated the

slope of bias around negative-slope zero-crossings in each subject’s fit drift function (Experiment

1a), around significant peaks in each subject’s response histograms (Experiment 1a), and around

commonly presented presented colors (Experiment 2) by fitting a line to the bias +/- 15◦ around the

point of interest. Mean standard deviation around these points was calculated around these points

using the same window (+/- 15◦). For monkey subjects, we boostrapped confidence intervals for

slope and standard deviation by resampling trials with replacement.

To compute the bias and SD for the non-uniform guessing strategy (Fig. S3.4), we performed

1000 iterations of a randomization test where memory reports were shuffled with respect to the

target colors and report the mean bias and SD for each target color across iterations.

To identify significant peaks in subjects’ response histograms (Experiment 1a), we first estimated

the PDF of subjects’ responses using kernel density estimation. We identified possible peaks as

samples larger than their two neighboring samples and recorded their amplitude. We then repeated

this analysis on the distribution of targets, resampling with replacement to create a null distribution

of peak amplitudes. Peaks in the original response distribution with an amplitude greater than

the 95th percentile relative to the null were deemed significant. We identified negative-slope zero-

crossings in the fit drift function of each subject by identifying peaks in the numerical integral of

the drift function. Peaks with a prominence in the 20th percentile or lower across subjects were

excluded from analysis.

Finally, to generate model predictions for bias and standard deviation, we fit the discrete attractor

model to each subject’s data and generated synthetic datasets (1,000 trials for each human subject

and 20,000 trials for each monkey) by simulating responses from each subject’s best fit model.

We then analyzed the bias and standard deviation of these simulated reports as above. Model

performance was assessed by correlating model predictions with empirical results across target colors.
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3.5.10 Dynamical model

We developed a quantitative model to describe how items in memory change over time. We as-

sume that two distinct influences may make memory dynamic. First, systematic biases may cause

memories to drift towards stable attractor states over time. Second, memories may be perturbed

by unsystematic random noise. We model memory using a stochastic ordinary differential equation

that captures both of these influences:

dθ = βLG(θ)dt+ σLdW (3.3)

This equation describes the time evolution of a color memory θ (a circular variable corresponding

to an angle in our circular color space) under the influence of some deterministic dynamics defined

by G (the drift) as well as an additive white noise process W with variance σ2. βL sets the gain

of the drift. Thus, βLG(θ)dt describes influence of drift and σLdW the influence of random noise

on memory. To test the hypothesis that memory load influences these dynamics we fit a separate β

and σ for each load n.

Based on the clustering we observe in the data, it seems likely that G(θ) is a nonlinear function.

We needed a relatively parsimonious way of describing G(θ) that still gave us enough flexibility to

describe this nonlinearity. So, for each subject, we defined G(θ) using a basis set consisting of twelve

first derivatives of the von mises distribution separated by 1 standard deviation on the interval

(0, 2π):

G(θ) =

12∑
j=1

wj
d

dθ
φ

(
2π

12
j,

2π

12

)
(3.4)

where φ is a von mises distribution parameterized by a mean and standard deviation. We then

divided G(θ) by its maximum absolute value. This normalization procedure aids the interpretation

of β: it is the maximum instantaneous drift rate. Our choice of 12 basis functions was to minimize

AIC in comparison to function estimates with higher or lower number of basis functions.

To fit the model described in equation 3.3 to subject data, we needed to describe the time

evolution of θ probabilistically. So, we rewrote equation 3.3 as a Fokker-Planck equation, a partial

differential equation that tracks probability density function of θ over time:

∂

∂t
p(θ, t) = − ∂

∂θ
βLG(θ)p(θ, t) +

σ2
L

2

∂2

∂θ2
p(θ, t) (3.5)

In order to track probability mass, we discretized our 1-dimensional state space (the value of θ)
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into 100 evenly spaced bins from 1◦ to 360◦. Once discretized, the change in p(θ, t) over a given

timestep dt can be described by a Markov transition matrix ML:

∂

∂t
p(θ, t) = MLp(θ, t) (3.6)

This discretized approximation can be solved analytically in time, yielding:

p(θ, t) = eMLtp(θ, 0) (3.7)

where p(θ, 0) is the initial state of memory after encoding.

We wanted to dissociate load-driven changes in the dynamics of memory and encoding. To

capture differences in encoding, we allowed the state of a memory at the start of the delay, p(θ, 0), to

vary as a function of load. To simulate the encoding process, we first initialized a narrow probability

density P0(Θ) that reflects the color of the target stimulus. P0 is a von mises distribution with mean

equal to the target color Θ and a standard deviation of 0.1 radians:

P0(Θ) = φ (Θ, 0.1) (3.8)

We then allowed P0 to propagate for a 1 second encoding period according to the following

differential equation:

dθ = β∗LG(θ)dt+ σ∗LdW (3.9)

where β∗L and σ∗L interact to set the bias and variance of the encoded memory. Therefore, p(θ, 0) is

calculated as:

p(θ, 0) = eM
∗
LP0(Θ) (3.10)

and the final probability distribution describing the memory of the target hue after a memory delay

of t seconds on a trial with load n is:

p(θ, t) = eMLteM
∗
LP0(Θ) (3.11)

All drift and diffusion parameters (βL, σL, β∗L, and σ∗L) are rates; they measure the change in

memory over time (either due to drift or diffusion). However, care must be taken when directly

comparing the value of these parameters across the encoding and memory periods. This is because
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encoding is modeled as occurring over a fixed period (1 second), while the length of the memory

delay can change from trial to trial. Therefore, the degree to which memory dynamics influence

reports depends on the length memory delay. Drift and diffusion can be compared more directly

within the encoding or memory periods.

Equation 3.11 describes the probability distribution for the memory of the target color Θ at time

t. However, our goal is to predict the subject’s report on a particular trial, p(θ̂, t), which does not just

depend on the color of the target (Bays et al., 2009; Zhang and Luck, 2008). On some trials, subjects

may experience complete failures of memory, resulting in random guessing. On other trials, subjects

may commit a ‘swap’ error and report their memory of one of the non-target colors, θ∗i (note that

the memory of non-target colors also evolved according to equation 3.11). Finally, random error may

be introduced at decoding. To account for these additional influences, we estimated each subject’s

probability of committing swap errors and guessing, and, for each trial, computed a mixture of the

target memory distribution, the non-target memory distributions, and a uniform component:

p(θ̂, t) = (1− λ− α)p(θ, t) + α
1

m

m∑
i=1

p(θ∗i , t) + λ
1

2π
(3.12)

where m is the number of non-target colors (0 or 2 for humans, 0 or 1 for monkeys). α and λ

represent the probability of swap errors and guesses, respectively. They are linear functions of t

parameterized by a slope a and intercept b. We estimated a unique λ and α function for each load

(note that α takes on a value of zero when load is 1). To capture decoding error, we circularly

convolved the final response distribution with a von mises distribution with a standard deviation

σ†. As noted below, we found the model with response error fit well to human behavior. However,

monkey behavior was best explained without this term.

We found the maximum likelihood estimate (joint likelihood across trials) of the free parameters

βL, β
∗
L, σL, σ

∗
L, aλL

, bλL
, aα, bα, wj , and σ† (humans only) using gradient descent. To obtained boot-

strapped distributions of the parameter distributions for human subjects, we repeatedly resampled

the parameters fit to each subject with replacement and took the mean of these values. To obtain

bootstrapped distributions for monkey subjects, we repeatedly resampled each monkey’s pool of

trials with replacement and repeated the fitting process. Model comparison was performed on data

pooled across sessions (monkeys) or subjects (humans).

Model fits indicated that random guessing increased with time for human subjects (Fig. S3.10),

consistent with previous reports (Pertzov et al., 2017; Rademaker et al., 2018; Shin et al., 2017).

Guessing decreased with delay, however, for the two monkeys. We wanted to ensure that trade-
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offs between guessing and other parameters, such as the rate of diffusion, were not driving the

effects of increased drift and diffusion with load. So, we fit different versions of the model in

which we systematically simplified our parameterization of guess rate. Across the two monkeys,

model comparison using AIC and BIC indicated that the full model was the best fit to the data.

Regardless, for all models, drift and diffusion increased with load, indicating that this is a stable

feature (Section 3.10).

Model comparison indicated that the full model including decoding error was clearly better than

the model without decoding error in humans. However, the model with decoding error was not

clearly better than a model without decoding error across monkeys and so we defaulted to the

simpler model (monkey E: wBIC = 0.01; monkey W: wBIC = 1.00; compared to wBIC = 1.00

in humans). Furthermore, in exploratory tests we found decoding error substantially disrupted

the ability of the model to predict the clustering and precision of responses in monkey W; with

decoding error the correlation between the predicted and observed response distribution in monkey

W dropped from .741 to .393 and the correlation between the predicted and observed pattern of

precision across colorspace dropped from .377 to .120. Based on this, we concluded that models with

decoding error best described the human behavior but that the simpler model without decoding error

best described the monkey behavior. Differences in decoding error could reflect different response

modalities (moving a mouse for humans, saccade for monkeys) or reflect the fact that monkeys saw

the entire color wheel while humans did not.

3.5.11 Simulated error of models over time

We wanted to identify if attractor dynamics might be normative and enhance the fidelity of memory.

To do this, we computed the expected mean error for the memory of a target color as a function

of delay time for the full dynamic model with attractor dynamics (drift + diffusion) and a model

without attractor dynamics (diffusion). The drift and diffusion parameters of the drift + diffusion

model were set to the mean fit parameters for the human subjects in Experiment 1a. The parameters

of the diffusion model were identical except that βL and β∗L were set to zero. To isolate error in the

representation of the target color, the probabilities of guessing and swaps were set to zero. To create

a representative drift function, we fit our basis set to the numerical derivative of the PDF of the

response distribution for human subjects (normalized to have a maximum absolute value of one),

which yields attractors at locations in color space where they are most frequently observed (i.e., at

commonly reported colors). To create biased target distributions, we parametrically took a weighted
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average of a distribution that was entirely uniform over color space and a biased distribution that

was uniformly distributed within 10 degrees of attractor states and zero elsewhere.

3.5.12 Nonlinear mapping between stimulus and perceptual space

The color space used to parameterize stimuli in these experiments (CIELAB) is designed to be per-

ceptually uniform, but we sought to demonstrate that inhomogeneties in this space cannot explain

our results. To demonstrate this, we analyzed an alternative model (Fig. S3.5a) which assumes a

nonlinear mapping between our stimulus parameterization (a circle in CIELAB space) and a hy-

pothetical true perceptual space (a square, although the results generalize to other shapes). The

continuous CEILAB and perceptual spaces were discretized into 1024 points. We simulated memory

reports by first generating 100,000 angles randomly distributed around our stimulus space (repre-

senting the target stimuli) and projecting these points onto the true perceptual space (representing

encoding). Memory was simulated as a purely diffusive process of the encoded target colors around

the true perceptual space (i.e., there were no discrete attractor dynamics). Simulations were run

for 1,000 timesteps (arbitrary units). Diffusive noise at each timestep was modeled as random step

between 0 and 4 points in either direction in the discretized perceptual space. Report was simulated

by projecting the diffused memory representations back into stimulus space. This model predicts

clustering of memory reports (Supplementary Figure 5a) but does not predict attractive bias around

cluster peaks (Fig. S3.5b) as observed empirically. We thank and anonymous reviewer for proposing

and implementing this alternative model.
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3.10 Supplementary figures
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Figure S3.1: Clustering increases with load and delay. (A) Difference in entropy between the response
distribution and target distribution for humans and monkeys as a function of load and delay. More
negative values indicate more clustered memory reports. (B) Mean absolute bias (averaged across
all target colors) for humans and monkeys as a function of load and delay. Violin plots indicate
distribution of bootstrapped values. P-values reflect non-parametric regression (bootstrap).
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Figure S3.2: Response histograms for humans and monkeys by condition.
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Figure S3.5: Simulated performance based on a nonlinear encoding of CIELAB color space. A
nonlinear mapping between stimulus space and a subject’s true representational space introduces
clustering into memory reports without discrete attractor dynamics but cannot explain memory
biases. (A) Model structure. Far left: across trials, target colors are uniformly distributed in
CIELAB space (orange circle). Center left: true perceptual space is assumed to be any arbitrary
shape (here: a square) other than a circle concentric with CIELAB space. When the uniform target
colors are projected into this true space, clusters form at locations where changes in the CIELAB
angle θ result in small changes in the true space. Center right: random diffusion in memory erodes the
concentration gradient in the true perceptual space over time. For clarity, we show a complete erosion
of the concentration gradient at t >> 0, but in practice the concentration gradient will only partially
degrade for delays of a few seconds when reports are still reasonably accurate. Far right: Projecting
the uniform distribution of memories in true space back into CIELAB space results in clustering at
locations where changes in the true space result in small changes in θ. For a square perceptual space,
this results in clustering at vertex angles, which may be mistaken for attractors. (B) Predicted bias
based on 100,000 simulated trials. Counterintuitively, this model predicts repulsive (positive slope)
bias around points of peak clustering, inconsistent with empirical results (Fig. S3.3). We thank an
anonymous reviewer for proposing and implementing this alternative model.
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Figure S3.6: Experiment 1b design and results. (A) Experiment 1b design. Experiment 1b was
similar to 1a, except that there were always two samples and the delay varied continuously between
1 and 7 seconds (see methods). (D) Mean absolute error +/- 95% CI (bootstrap) as a function of
delay length. Red = model fit, black = data. (C) Maximum likelihood dynamic model parameter
estimates for Experiment 1b. Color intensity reflects normalized proportion of bootstrap iterations.

63



-45 0  45 

reported color (relative to common color)

0.01

0.011

0.012
de

ns
ity

null 95% CI

A B

reported color
0

50

100

150

200

co
un

t

first third of trials

reported color
0

50

100

150

200

co
un

t

last third of trials

Figure S3.7: Distribution of color reports in Experiment 2. (A) Probability of report relative to
common color location in colorspace, computed using the subset of trials in which target colors
were distributed uniformly. (B) Distribution of reported colors for the first and last third of trials,
computed using the subset of trials in which target colors were distributed uniformly.

64



Su
bj

ec
ts

 re
po

rte
d

 u
ni

fo
rm

 ta
rg

et
s

target color 
(relative to common color)

re
sp

on
se

 b
ia

s 
(d

eg
)

4000 ms
500 mslast third

-30 -20 -10 0 10 20 30
-10

-8

-6

-4

-2

0

2

4

6

8

10

re
sp

on
se

 b
ia

s 
(d

eg
)

4000 ms
500 ms

target color 
(relative to common color)

first third

-30 -20 -10 0 10 20 30
-10

-8

-6

-4

-2

0

2

4

6

8

10

-30 -20 -10 0 10 20 30
-10

-8

-6

-4

-2

0

2

4

6

8

10

target color 
(relative to common color)

re
sp

on
se

 b
ia

s 
(d

eg
)

last third

-30 -20 -10 0 10 20 30
-10

-8

-6

-4

-2

0

2

4

6

8

10

target color 
(relative to common color)

re
sp

on
se

 b
ia

s 
(d

eg
)

first third

de
ns

ity

null 95% CI

fit attractor location
(relative to common color)

0-40 400

.02

null 95% CI

de
ns

ity

0

.02

fit attractor location
(relative to common color)

0-40 40

4000 ms
500 ms

4000 ms
500 ms

ch
an

ge
 in

 b
ia

s 
sl

op
e

.5 s

ch
an

ge
 in

 b
ia

s 
sl

op
e

4 s

.5 s 4 s

0

-0.4

-0.8

0

-0.4

-0.8

delay (s)

delay (s)

A B C

Su
bj

ec
ts

 re
po

rte
d

 b
ia

se
d 

ta
rg

et
s
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Figure S3.9: Online and lab subjects show qualitatively similar behavior. (A) Distribution of angular
error. P-values reflect the results of a repeated-measures ANOVA predicting mean error as a function
of load and time, as in text describing Fig. 1b. (B) Bias around putative attractors. P-values reflect
a t-test of the slope of bias at histogram peaks vs zero, as in text describing Fig. S3. (C) Precision
around putative attractors. P-values reflect a t-test of the relative standard deviation of memory
reports at histogram peaks vs zero, as in text describing Fig. ED5. (D) Dynamical model parameter
fits. P-values reflect differences in diffusion and drift parameters as a function of load, as in the text
describing Fig. 6.
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Figure S3.10: Estimated rate of guessing and swap errors. Plots show the maximum likelihood
guess and swap probabilities from dynamic model fits for each load and delay. Color intensity
reflects normalized proportion of bootstrap iterations.
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population model no. param AIC ∆AIC wAIC BIC ∆BIC wBIC
human full 27 119885 0 1.00 120094 0 0.98

drop βL 25 119908 23 0.00 120102 7 0.02
drop β∗L 25 120500 615 0.00 120694 600 0.00

online full 27 85108 0 0.99 85308 6.2 0.04
drop βL 25 85117 8.6 0.01 85302 0 0.96
drop β∗L 25 85502 393 0.00 85686 385 0.00

lab full 27 34016 0 1.00 34194 0 0.99
drop βL 25 34038 22 0.00 34203 8.8 0.01
drop β∗L 25 34310 294 0.00 34475 281 0.00

monkey W full 26 129087 0 1.00 129286 0.0 0.80
drop βL 24 129105 18 0.00 129289 2.8 0.20
drop β∗L 24 129654 567 0.00 129838 552 0.00

monkey E full 26 144746 0 1.00 144947 0 1.00
drop βL 24 144873 126 0.00 145058 111 0.00
drop β∗L 24 144871 125 0.00 145057 110 0.00

Table 3.1: AIC and BIC model comparison. We compared the full model with competing models
without attractor dynamics during encoding or maintenance. Model weights (wAIC and wBIC)
indicate the probability that the given model is the best model in the set given the data and set of
candidate models.
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subject full drop βL drop β∗L
human 15.3 14.7 0
monkey W 14.5 14.1 0.6
monkey E 5.0 2.0 1.9

Table 3.2: Cross-validated model comparison. Mean difference in 20-fold cross-validated log-
likelihood for full model and competing models without attractor dynamics during encoding or
maintenance. Values represent the increase in log-likelihood relative to the worst fitting model,
averaged across folds.
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p(Guess) eq. parameter MLE
subject model C L D I σ1 σ2 σ∗1 σ∗2 β1 β2 β∗1 β∗2
monkey W 1 x x x x 15 31 12 13 4 15 33 45

2 x x x 15 29 12 14 4 14 32 44
3 x x 15 36 11 17 5 17 32 49
4 x x 13 26 14 16 4 13 32 44
5 x 12 32 14 21 4 16 31 50
6 13 21 32 69 0 9 161 344

monkey E 1 x x x x 17 39 48 58 28 45 8 82
2 x x x 23 35 44 71 33 39 4 88
3 x x 23 35 47 57 32 44 2 85
4 x x 17 29 47 76 29 34 6 84
5 x 17 30 52 60 28 40 4 80
6 17 29 69 76 25 35 5 85

Table 3.3: Parameter fits for simplified models of guessing and swap behavior. Maximum likelihood
estimates for drift and diffusion parameters for models with different parameterizations of guessing
probability. An ‘x’ indicates that a parameter is included in a given model. For the most flexible
model (model 1, identical to that reported in the main text), guessing is effectively parameterized
by a constant term C, a coefficient determining an effect of load on guessing (L), a coefficient
determining an effect of memory delay on guessing (D), and an interaction term (I). Successive
models drop combinations of these terms, yielding less flexibility in how guessing changes with load
and time. For example, for model 5, p(Guess) is constant across load and time. Regardless of the
parameterization, however, drift and diffusion consistently increase with load during both encoding
and memory.
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Chapter 4

Transformation of memories and

percepts by attention

4.1 Abstract

Cognitive control guides behavior by controlling what, where, and how information is represented in

the brain. Previous work has shown parietal and prefrontal cortex direct attention, which controls the

representation of external sensory stimuli. However, the neural mechanisms controlling the selection

of representations held ‘in mind’, in working memory, are unknown. Here, we show prefrontal

cortex controls working memory by selectively enhancing and transforming its contents. Monkeys

were trained to switch between two tasks, requiring them to either select an item from a set of

items held in working memory or attend to one stimulus from a set of visual stimuli. Simultaneous

neural recordings in prefrontal, parietal, and visual cortex found prefrontal cortex played a primary

role in selecting an item from working memory, representing selection before parietal and visual

cortex. Surprisingly, the same representation that controlled selection also directed attention to an

external stimulus, suggesting prefrontal cortex may act as a general controller. Selection acted on

memory representations by strengthening the selected item and transforming it in a task-dependent

manner. Before selection, when both items were relevant to the task, the identity of each item was

represented in an independent subspace of neural activity. After selection, the representation of only

the selected item was strengthened and transformed into a new subspace that was used to guide

the animal’s behavioral report. Together, our results show how prefrontal cortex controls working

memory, selectively enhancing and transforming memories to support behavior.
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4.2 Introduction

So far, we have provided evidence that expectations transform percepts and memories in a homolo-

gous manner. We next examine if another top-down cognitive processes, attention, similar impacts

perception and working memory. Items held in working memory (e.g. the list of specials at a restau-

rant) are thought to be represented in a distributed network of brain regions, including prefrontal

cortex, parietal cortex, and sensory cortex (Christophel et al., 2017). A control mechanism can

then select a specific item from working memory and use it to guide behavior (Ester et al., 2018;

Gazzaley and Nobre, 2012; Myers et al., 2017; Sprague et al., 2016) (e.g. selecting a special to

order for dinner). This process is homologous to attention, which selectively enhances task-relevant

sensory inputs (Buschman and Kastner, 2015; Desimone and Duncan, 1995). Previous functional

imaging work has shown prefrontal and parietal cortex are active when an item is selected from

working memory (LaBar et al., 1999; Nee and Jonides, 2009; Nobre et al., 2004). However, because

it has never been studied at the level of single neurons, the neural mechanisms of selection remain

unknown.

To address this, we simultaneously recorded from the prefrontal, parietal, and visual cortices of

two monkeys (Macaca mulatta) as they selected one of two items held in working memory. On each

trial of the experiment, the animals remembered the color of two squares (Fig. 1A, an ‘upper’ and

‘lower’ stimulus). After a memory delay, the animals received a cue that indicated whether they

should report the color of the ‘upper’ or ‘lower’ square (now held in working memory). This cue was

followed by a second memory delay, after which the animals reported the color of the cued square

by saccading to the matching color on a color wheel (note, the wheel was randomly rotated on each

trial to prevent motor planning). Therefore, to perform the task, the animals had to hold two colors

in working memory, select the color of the cued square, and then use it to guide their response to

the color wheel.

4.3 Results

4.3.1 Attention and selection reduce behavioral errors

Overall, both monkeys performed the task well; mean angular error between the presented and

reported color was 51.8◦(Fig. 4.1b-c and Fig. S4.1a). As expected (Bays et al., 2009; Wilken and

Ma, 2004; Zhang and Luck, 2008), accuracy depended on the number of items in memory (i.e. the

‘memory load’) – angular error was greater when two colored squares were presented, compared to
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Figure 4.1: Monkeys use selection and attention to control the contents of working memory. (A)
Animals were trained to perform two variants of a delayed estimation paradigm. On each trial, two
colored squares were presented (one ‘upper’ and one ‘lower’ stimulus). Lower inset shows symbolic
cues presented at fixation to indicate whether the upper or lower stimulus should be reported at the
end of the trial in order to receive reward. In the ‘selection’ condition, the cue appeared during a
memory delay after stimulus offset, requiring the animal to select an item from working memory.
Animals received a graded juice reward for making an eye movement to the portion of a color wheel
matching the color of the cued stimulus. Color wheel inset shows error was calculated as the angular
deviation between the presented color (dashed) and the reported color (solid). (B) Distribution of
angular error (circles) with best-fitting mixture models (lines, see methods) for single item trials
(gray), selection trials (blue), and attention trials (orange). (C) Bootstrapped distribution of mean
angular error in the selection, attention, and single-stimulus conditions (colors as in B). (D) In a
separate behavioral experiment, we fixed the total memory delay of the selection condition and
systematically varied the length of the delay between stimuli offset and cue onset. (E) Increasing
the time before selection increased error. Distribution shows mean angular error as a function of
the delay between stimulus and selection cue (bootstrapped). Bars and asterisks reflect paired
randomization tests. (F) Animals also performed an ‘attention’ condition, interleaved with selection
trials (in blocks). In this condition, the cue appeared before stimulus onset. Inset: the two symbolic
cues used in the attention condition. * p < 0.05, ** p < 0.01, *** p < 0.001.
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when only one square was presented (Fig. 4.1b-c and Fig. S4.2a; mean absolute error was 38.1◦for

1 item, 51.8◦for 2 items, p < 0.001, randomization test). The increased error with two items in

memory is likely due to interference between the items (Bays, 2015; Bouchacourt and Buschman,

2019; Buschman et al., 2011; Sprague et al., 2014). Selecting an item in working memory is thought

to reduce such interference(Bays and Taylor, 2018; Pertzov et al., 2013). Consistent with this,

reports were more accurate when selection occurred earlier in the trial (Fig. 4.1d-e and Fig. S4.2b,

53.1◦, 54.4◦, and 57.8◦for 0.5, 1, and 1.5 s post-cue, respectively; linear regression, β = 4.67+/−1.08

SEM, p < 0.001, bootstrap).

In addition to the selection condition, animals also performed an ‘attention’ condition. On

attention trials, the cue was presented before the colored squares, allowing the animal to attend to

the location of the to-be-reported stimulus (Fig. 4.1f). Memory reports were more accurate in the

attention condition than in the selection condition (Fig. 4.1b-c and Fig. S4.2b; 46.1◦vs. 51.8◦,p <

0.001, randomization test). In addition, the effect of memory load was reduced; increasing the

number of stimuli from 1 to 2 led to a smaller increase in error on attention trials (9.01◦vs. 13.7◦for

attention/selection, p < 0.001, bootstrap). This is consistent with attention reducing interference

between stimuli(Desimone and Duncan, 1995; Treue and Maunsell, 1996) and modulating what

enters working memory(Everling et al., 2002).

4.3.2 Attention and selection share a population code

To understand the neural mechanisms of selection, we simultaneously recorded from four regions

known to be involved in working memory (Fig. 4.2a) – lateral prefrontal cortex (LPFC; 682 neurons),

frontal eye fields (FEF; 187 neurons), parietal cortex (7a/b; 331 neurons), and intermediate visual

area V4 (341 neurons). Neurons in all four regions carried information about which item was

selected from working memory (i.e. the upper or lower item; Fig. 4.2b and Fig. S4.3a-b). To

quantify information about selection, we trained a logistic regression classifier to decode the location

of selection from the firing rates of populations of neurons recorded in each region (Fig. 4.2c; pseudo-

populations were constructed across all recording days, see methods for details). As seen in Fig. 4.2d,

the classifier could decode the location of selection in all four regions (blue lines). However, significant

information about selection emerged first in LPFC and then later in posterior regions (Fig. 4.2e, 175

ms post-cue in LPFC, 245 ms in FEF, 285 ms in parietal, and 335 ms in V4). LPFC was significantly

earlier than parietal cortex and V4 (p = 0.005 and p = 0.048, randomization test; but statistically

indistinguishable from FEF, p = 0.371). This suggests that signals necessary for controlling selection
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Figure 4.2: Selection is directed from prefrontal cortex and shares a population code with attention.
(A) Neural activity was recorded simultaneously from lateral PFC (LPFC), the frontal eye fields
(FEF), parietal cortex (area 7a/b), and visual area V4. (B) Firing rate of an example PFC neuron
around cue onset when the upper (gray) or lower (green) stimulus was cued in the selection and
attention conditions. Shaded regions are standard error of the mean. Inset shows different cues
used for selection and attention. (C) Training and testing regime for classifiers designed to quantify
information about the location of selection and attention based on population firing rates. Classi-
fication accuracy was measured on held-out data both within selection (left) and across selection
and attention (right). Classifiers were trained and tested on different cue sets and performance
was averaged across these splits. (D) Timecourse of information about the location of selection
and attention for each brain region (labeled in upper left). Lines show mean classification accuracy
around cue onset for the classifier trained and tested within the selection condition (blue) and across
selection and attention (purple). Error bars are standard error of the mean. Bars along top indicate
above-chance classification: p ¡ 0.05, 0.01, and 0.001 for thin, medium, and thick lines, respectively.
(E) Timepoints of significant classification for each brain region, as in (D). * p < 0.05, ** p < 0.01,
*** p < 0.001.
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emerge first in prefrontal cortex.

There is a functional homology between selection and attention(Gazzaley and Nobre, 2012). They

both control neural representations – selection controls ‘internal’ working memory representations,

while attention controls ‘external’ sensory representations. In both cases, control mitigates interfer-

ence between representations (Buschman et al., 2011; Desimone and Duncan, 1995; Schneegans and

Bays, 2017). Motivated by this functional homology, we investigated whether there was a shared

population representation controlling selection and attention. Previous work in humans has shown

both attention and selection activate prefrontal and parietal cortex(LaBar et al., 1999; Lenartowicz

et al., 2010; Nee and Jonides, 2009; Nobre et al., 2004). However, it is not known if the neural

mechanisms controlling selection and attention are the same. To test this, we first examined the

responses of single neurons to the ‘upper’ and ‘lower’ cues on selection and attention trials. Neurons

that encoded the location of selection responded similarly during attention in LPFC (Fig. S4.3c;

r(586) = 0.09, p = 0.036). In contrast, sensitivity for selection and attention were uncorrelated in

FEF, V4, and parietal (Fig. S4.3c; FEF: r(169) = 0.04, p = 0.617; V4: r(318) = −0.04, p = 0.513;

parietal: r(301) = 0.03, p = 0.612).

Furthermore, classifiers trained to decode the location of selection generalized to decode the

location of attention (and vice-versa, Fig. 4.2c; see methods). Consistent with a common mechanism

in LPFC, generalization performance was significantly above chance and followed the timecourse of

the selection classifier (Fig. 4.2d, purple lines). In contrast, generalization was weaker in FEF and

trended towards being delayed relative to LPFC (p = 0.12, randomization test) and there was no

significant generalization in parietal cortex or V4 (Fig. 4.2d-e; poor generalization was not due to an

inability to decode the location of attention, Fig. S4.4). Together, these results suggest a common

neural mechanism in LPFC controls attention to sensory inputs and selection of items in working

memory.

4.3.3 Selection enhances the representation of task-relevant memories

Next, we explored how selection impacts the neural representations of items in working memory. As

noted above, selection improves working memory accuracy(Griffin and Nobre, 2003; Murray et al.,

2013; Pertzov et al., 2017; Sprague et al., 2016, Fig. 4.1e). To understand the neural mechanisms,

we first measured color information in LPFC, FEF, parietal (7a/b), and V4. Single neurons in all

four regions showed strong color selectivity (Fig. 4.3a). Selectivity was quantified by measuring

the circular entropy of each neuron’s firing rate in response to colors around the color wheel (see
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Figure 4.3: Effects of selection on color information in working memory. (A) Color tuning curve for an
example LPFC neuron. Firing rate (radial axis) was averaged from 500-700 ms post-cue as a function
of the color (angular axis) of the selected (light) and non-selected (dark) stimulus. This neuron carries
information about the color of the selected item (i.e. the neural response is non-uniform), but this
information is reduced for when the item is not selected. (B) Mean z-scored color information for the
selected and non-selected color (in light and dark blue, respectively) in each brain region, averaged
across all neurons. Information was quantified by calculating the entropy of the selected/non-selected
color tuning curves (high entropy reflects high color information). Error bars are standard error of
the mean. Horizontal bars indicate significant information for the selected item (light blue), the
non-selected item (dark blue), and significant difference in information about the selected and non-
selected items (black). Bar width indicate significance: p ¡ 0.05, 0.01, and 0.001 for thin, medium,
and thick, respectively. All tests were cluster-corrected for multiple comparisons (see methods). (C)
Information about the presented color of the selected item (light blue) and the reported color of
the selected item (gray), averaged across all neurons. Both types of information were calculated
on firing rates in a 200 ms window prior to onset of the response color wheel. Distributions show
bootstrapped estimates of the mean. Horizontal lines indicate pairwise comparisons. * p < 0.05, **
p < 0.01, *** p < 0.001.

methods). A significant proportion of neurons in each region encoded color information about either

the upper or lower stimulus during the trial (LPFC: N = 387/607 cells; FEF: 114/178; parietal:

181/307; V4: 245/323; all p < 0.001, binomial test). Across the population, all four regions carried

information about the color of the stimuli during their presentation (Fig. 4.3b, left panels). Color

information was then maintained across this distributed network during the first memory delay

(Fig. 4.3b; middle panels, before selection). Interestingly, there was less information about color on

attention trials compared to selection trials (Fig. S4.5-6). This could reflect a task-specific difference

in how memories are stored; recent theoretical work (Masse et al., 2019) suggests a more active

representation is needed when manipulating memories (such as in the selection condition).

Selection enhanced memories across prefrontal and parietal cortex. In LPFC, color information

about the selected memory was increased relative to the unselected memory, starting at 475 ms
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after cue onset (Fig. 4.3b). Similar differences were seen in FEF and parietal (Fig. 4.3b, at 715

and 565 ms, respectively). In V4, selection did not impact memory representations (Fig. 4.3b;

although information about the selected item tended to increase with the accuracy of memory

reports, Fig. S4.7). The selective enhancement of a memory was related to behavior: when memories

reports were inaccurate, the effect of selection was absent (in PFC and 7a) or slightly inverted (in FEF

and V4), suggesting that the animal failed to select an item or selected the wrong item (Fig. S4.7-8).

These results are consistent with previous fMRI and EEG work in humans(Ester et al., 2018;

Sprague et al., 2016) and suggest selection and attention use similar mechanisms to enhance mem-

ory/sensory representations in prefrontal and parietal cortex (see Fig. S4.5 for enhanced representa-

tion of attended stimuli in our task). However, in contrast with attention(Cisek and Kalaska, 2005;

Desimone and Duncan, 1995; Reynolds et al., 1999), selection did not reduce the response to the

unselected memory in LPFC and parietal cortex (Fig. S4.9; but did slightly decrease the response in

FEF), suggesting selection may not engage the competitive mechanisms that suppress unattended

stimuli(Reynolds et al., 1999).

4.3.4 Attention and selection prepare representations for read-out

Next, we were interested in how the changing task-demands during the trial affected memory rep-

resentations. Early in the trial, during the first delay, color memories must be maintained in a form

that allows the animal to select the cued item (i.e. colors are bound with location information).

Later in the trial, after selection, the same information was used in a different way – to guide the

visual search of the color wheel (which results in the anima’s decision and eye movement). Given

this change in how memory information is used during the trial, we tested whether memory repre-

sentations were transformed by selection. For these analyses, we focused on neural representations

in LPFC because activity in this region encoded both stimuli and was tightly linked with behavior

(Fig. 4.3c).

Early in the trial, before selection, the color of each item in memory was represented in separate

subspaces in the LPFC neural population. Fig. 4.4a shows the representation of color information

about the upper and lower item, before selection (projected into a reduced three dimensional space,

see methods). Color information showed a clear organization; the responses to four categories of color

were separated and coded in color order for both the upper and lower item (i.e. neighboring colors

on the color wheel had neighboring representations; note: the response wheel was rotated on each

trial, so this does not reflect motor planning). Color representations for each item were constrained
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Figure 4.4: Selection transforms task-relevant information into a common subspace. (A) Population
response for selected colors (binned into 4 color bins, indicated by marker color) at different locations
(upper vs. lower, indicated by marker shape). Population response is taken as the vector of mean
firing rate of all recorded neurons before the cue (pre-cue, left; taken at 400 ms) and after the cue
(post-cue, right; taken just prior to target onset, see methods for details). Responses are projected
into a reduced dimensionality subspace defined by the first three principle components (PCs) of
all 8 color/location pairs. Grey lines connect adjacent colors along the color wheel. Gray shaded
region reflects the best fitting planes to each location (see methods). (B) Color representations for
upper and lower items become correlated after selection. Line shows the mean correlation between
the population representation for each color when it was presented/remembered in the ‘upper’ or
‘lower’ position, over time. Correlation was measured after subtracting the mean response at each
location (see methods). Error bars reflect standard error of the mean. (C) Color planes (seen in A)
become aligned after selection, reflected in an increase in the cosine of the angle between the two
color planes around the time of cue onset. Black line shows the best-fitting logistic function. (D)
Alignment of color representations before (left) and after (right) selection. Colored markers indicate
vector of population firing rate for both upper and lower items (markers as in A). Here, all vectors
are projected into the ‘lower’ subspace, defined by the first two PCs that maximally explain variance
in the color of the lower item (defined in the full N-dimensional neural space on held-out data; see
methods). Timepoints and markers are as in (A). (E) Timecourse of population responses to the
color of the upper item, projected into the upper subspace defined before selection (left) and after
selection (right). Upper subspaces were defined as in D, but for the upper item. (F) Before selection,
color representations are better separated using the pre-selection subspace. After selection, colors
are better separated in the post-selection subspace. Separability was measured as the area of the
quadrilateral defined by the population vectors for each color, projected into either the pre-selection
or post-selection subspaces (left and right columns in each plot; area averaged across upper and
lower items). Subspaces are defined as in D and E. Violin plots show bootstrapped distributions.
(G) Schematic of how selection transforms color representations. Initially, the colors of the upper
and lower item are encoded in orthogonal subspaces specific to each item’s location. The selected
item is then transformed into a common subspace, regardless of its initial location. (H) Upper and
lower representations become aligned after selection (left column) but immediately after stimulus
presentation during attention (right column). Histograms show bootstrapped distribution of the
cosine of the angle between the best-fitting planes for the upper and lower stimuli in either an ‘early’
(150-350 ms post-stimulus offset) or ‘late’ (200-0 ms before color wheel onset) time period during
the delay. Green lines indicate median values. · p < 0.10, * p < 0.05, ** p < 0.01, *** p < 0.001.

to a ‘color plane’, consistent with a two-dimensional color space (these planes explained > 97% of

variance). As seen in Fig. 4.4a, the upper and lower color planes appeared to be independent from

one another, suggesting color information about the upper and lower items were separated into two

different subspaces in the LPFC population (before selection).

Consistent with separate subspaces, the color representations of the upper and lower items were

anti-correlated before selection (Fig. 4.4b, e.g. the N-neuron population vectors of ‘red upper’ and

‘red lower’ were anti-correlated; mean r = −0.067 for -300 to 0 ms pre-selection, p = 0.009, boot-

strap). This weak anti-correlation suggests that tuning curves of neurons were slightly inverted for

color across the two spatial locations. Further consistent with separate subspaces, the median angle

between the color planes of the upper and lower items was 79.1◦(Fig. 4.4c, IQR: 71.4◦to 85.1◦),

suggesting the subspaces were nearly orthogonal. This orthogonality was not because independent
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populations of neurons encoded each item: as expected (Rigotti et al., 2013), more LPFC neurons

were selective for both items in memory than expected by chance (31% and 35% of neurons selective

for the color of upper/lower stimulus were also selective for other item; p = 1.21e−4, binomial test).

Further reflecting the different upper and lower subspaces, color representations of an item were

less separated when they were projected onto the other subspace (e.g. projecting upper colors into

the lower color subspace, Fig. 4.4d); each item’s color subspace was defined as the 2D space that

maximally captured color information in the full N-dimensional neural space. To quantify the sepa-

rability of colors, we measured the area of the quadrilateral defined by the four color representations

- increased separation of colors increases this ‘color-area’. Consistent with independent subspaces

for upper and lower items, color-area was greater when color representations were projected into

their own subspace compared to the other subspace (86.1 vs. 35.2 units2, p = 0.041, bootstrap; all

subspaces were defined on held-out data).

After selection, the representation of the selected item was transformed into a different subspace

(Fig. 4.4e). Reflecting this transformation, the pre-selection subspace separated colors early in the

trial, but this separation collapsed by the end of the second memory delay (Fig. 4.4e, left, and

Fig. S4.10). Accordingly, color-area tended to decrease over time from 74.1 to 39.4 units2 (Fig. 4.4f,

left; p = 0.076, bootstrap). Instead, after selection, colors were represented in a new ‘post-selection’

subspace (Fig. 4.4e, right, and Fig. S4.10; color-area increased in the post-selection subspace from

27.8 to 261.9 units2 across time, Fig. 4.4f, right; p < 0.001, bootstrap).

Interestingly, this transformation was such that the post-selection subspaces for the upper and

lower items were now aligned (Fig. 4.4A). Consistent with such an alignment, the representation

of the color of the selected item shifted from being anti-correlated before selection to positively

correlated after selection (Fig. 4.4b, mean r = 0.139 for -300 to 0 ms prior to target onset, p < 0.001

vs zero and vs pre-cue, bootstrap). Furthermore, the color planes of the upper and lower item shifted

from orthogonal to parallel: the angle between the planes was 20.1◦after selection (IQR: 11.6◦-

29.0◦). This change was significant over time, as measured by a significant increase in the cosine of

the angle between the upper and lower color planes after selection (Fig. 4.4c, p = 0.006, bootstrap

test of logistic regression). Finally, color representations of an item were now well separated when

they were projected onto the other color subspace (Fig. 4.4d; color-area increased from 35.2 to 94.0

units2 over time, p = 0.010, bootstrap). The alignment of color spaces was important for behavior:

when memory reports were inaccurate, the increase in cosine of the angle between the two color

planes was reduced (Fig. S4.11, p = 0.0273, randomization test).

The dynamic re-alignment of neural representations may reflect changing task demands during
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the trial. Before selection, coding of the two memories should be independent to allow for selection

of a specific color (the independent subspaces of Fig. 4.4a, schematized in Fig. 4.4g, left). After

selection, the color of the selected item should move into a shared ‘template’ subspace that can be

used to guide visual search, regardless of whether the upper or lower item was selected (schematized

in Fig. 4.4g, right). In this way, location information is abstracted away, as it is no longer relevant.

If the transformation of memories is driven by task demands, then these dynamics should follow

a different time course on attention trials. On attention trials, the animals can immediately prepare

to search for the cued color after stimulus presentation. Accordingly, the representations of the

upper and lower colors were positively correlated immediately after stimulus offset on attention

trials (Fig. S4.12). Furthermore, the upper and lower color planes were well-aligned throughout the

trial (Fig. 4.4h; early: median angle = 34.5◦, IQR = 22.1◦to 51.4◦; late: median angle = 30.4◦, IQR

= 18.5◦to 46.2◦; no change with time, p = 0.449, bootstrap; there was a trend towards an interaction

between time and attention/selection, p = 0.067). These results suggest the transformation of color

information is under cognitive control, rather than inherent in the dynamics of the circuit.

Finally, we were interested in whether the same ‘template’ space was used in the selection and

attention tasks. Consistent with a similar template space across tasks, we found a weak, but signif-

icant, correlation between color representations at the end of the delay on attention and selection

trials (Fig. S4.13, mean r = 0.06, p = 0.015, bootstrap). This correlation did not exist before

selection (mean r = −0.01, p = 0.634) and increased with time (p = 0.027, bootstrap).

4.4 Discussion

Altogether, these results provide novel insight into the mechanisms controlling working memory.

Simultaneous recordings from prefrontal, parietal, and visual cortex show that prefrontal cortex

directs selection to internal memory representations. Furthermore, selection and attention had

overlapping representations in LPFC, with delayed or no generalization in FEF, parietal cortex,

and visual cortex. These results suggest lateral prefrontal cortex is a ‘domain-general’ controller,

categorically directing the control of representations regardless of whether they are internal memories

or external stimuli. This could be useful for generalizing a task across two cognitive domains, such

as sensory processing and working memory (e.g. selecting a dinner special from memory or from

a printed list). Conversely, the more differentiated control signals in FEF and parietal cortex may

allow for representation-specific control of memories or sensory stimuli.

Selection enhanced working memory representations in prefrontal and parietal cortex, corre-
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sponding to an improvement in working memory accuracy. This is similar to attention (Reynolds

et al., 1999; Reynolds and Heeger, 2009) and selection of motor actions(Cisek and Kalaska, 2005),

suggesting there is a common mechanism for enhancing representations in the brain to overcome

interference with competing sensory inputs, motor actions, or memories.

Selection also transformed memory information. Early in the trial, working memory represen-

tations were held in location-specific ‘upper’ and ‘lower’ spaces, perhaps facilitating the selection of

a memory by its associated location. Then, later in the trial, the selected memory shifted into a

shared ‘template’ space, which could be used to guide responses by acting as a template for search-

ing the color wheel (Fig. 4.4a). Interestingly, all three spaces (upper, lower, and template) were

approximately orthogonal to one another, which could reduce interference between simultaneously

maintained memory representations (i.e. upper and lower) and limit interactions between mem-

ory representations and search-related representations. The dynamic transformation of the selected

memory from the upper/lower space to the shared template space is reminiscent of the rotation of

motor movements from a passive ‘null’ space to an active ‘response’ space (Kaufman et al., 2014).

Our results build on this work, showing multiple representational spaces can converge onto a single

common space (i.e., both lower and upper can transform into the template space). Furthermore,

we find these dynamics are under cognitive control and depend on task demands, reflected in the

different timecourses of transformation across selection and attention.

More broadly, such dynamic transformations could be a mechanism of cognitive control. Cog-

nitive control is thought to rely on task-specific routing of information (Miller and Cohen, 2001).

Previous work has suggested such routing can occur through gain modulation(Miller and Cohen,

2001) or changes in synchrony (Buschman et al., 2012; Fries, 2015; Fries et al., 2001). Our results

suggest an alternative mechanism – cognitive control dynamically transforms information in a task-

specific manner, allowing information to selectively engage with task-relevant circuits(Stokes et al.,

2013). For example, consider a downstream ‘visual search’ circuit that uses color information from

the common template space to guide visual search. Early in the trial, memories are stored in the

upper/lower spaces, which are orthogonal to the template space (Fig. 4.4g, left). Thus, colors are

not distinguishable to the visual search circuit and so the circuit is not engaged. After selection,

memory information is transformed into the shared template space (Fig. 4.4g, right) and the visual

search circuit can be engaged. In this way, dynamically transforming representations may allow the

brain to control what and when cognitive computations are engaged.
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4.5 Methods

4.5.1 Subjects

Two adult male rhesus macaques (Monkey 1 and 2, 12.1 kg and 8.9 kg) performed the experiment. All

experimental procedures were approved by the Princeton University Institutional Animal Care and

Use Committee and were in accordance with the policies and procedures of the National Institutes

of Health.

4.5.2 Behavioral task

Stimuli were presented on a Dell U2413 LCD monitor positioned at a viewing distance of 58 cm. The

monitor was calibrated using an X-Rite i1Display Pro colorimeter to ensure accurate color rendering.

During the experiment, subjects were asked to remember the color of either 1 or 2 square stimuli

presented at two possible locations. The color of each sample was drawn from 64 evenly spaced

points along an isoluminant circle in CIELAB color space. This circle was centered at (L = 60,

a = 6, b = 14) and the radius was 57 units. The stimuli measured 2◦of visual angle (DVA) on

each side. Each stimulus could appear at one of two possible spatial locations: 45◦clockwise or

counterclockwise from the horizontal meridian (in the right hemifield; stimuli are depicted in the

left hemifield in Figure 1 for ease of visualization) with an eccentricity of 5 DVA eccentricity from

fixation. To perform the selection task, the animal had to remember which color was at each location

(i.e., the ‘upper’ and ‘lower’ colors).

The animals initiated each trial by fixating a cross at the center of the screen. On selection trials,

after 500 ms of fixation, one (20% of trials) or two (80% of trials) stimuli appeared on the screen.

The stimuli were displayed for 500 ms, followed by a memory delay of 500 or 1,000 ms. Next, a

symbolic cue was presented at fixation for 300 ms. This cue indicated which sample (upper or lower)

the animal should report in order to get juice reward. Two sets of cues were used in the experiment

to dissociate the meaning of the cue from its physical form. The first set (cue set 1) consisted

of lines oriented 45◦clockwise and counterclockwise from the horizontal meridian (cueing the lower

and upper stimulus, respectively). The second set (cue set 2) consisted of a triangle or a circle

(cueing the lower and upper stimulus, respectively). Cues were presented at fixation and subtended

2 degrees of visual angle. After the cue, there was a second memory delay (500-700 ms), after which

a response screen appeared. The response screen consisted of a ring 2◦thick with an outer radius

of 5◦. The animals made their response by breaking fixation and saccading to the section of the
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color wheel corresponding to the color of the selected (cued) memory. Importantly, the color ring

was randomly rotated on each trial to prevent motor planning or spatial encoding of memories. The

animals received a graded juice reward that depended on the accuracy of their response. The number

of drops of juice awarded for a response was determined according a circular normal (von mises)

distribution centered at 0◦error with a standard deviation of 22◦. This distribution was scaled to

have a peak amplitude of 12, and non-integer values were rounded up. When response error was

greater than 60◦for Monkey 1 (40◦for Monkey 2), no juice was awarded and the animal experienced

a short time-out of 1 to 2 s. Responses had to be made within 8 s, although, in practice, this

restriction was unnecessary as response times were on the order of 200–300 ms.

Attention trials were similar to selection trials, except that the cue was presented 200-600 ms

before the stimuli. After the colored squares, a single continuous delay occurred before the onset

of responses screen (1300-2000 ms for Monkey 1 and 1000-2000 ms for Monkey 2). For behavioral

analyses and all neural analyses around the response epoch, we only analyzed trials with a minimum

of delay of 1300 ms to match the total delay range for attention and selection.

Condition (selection or attention) and cue set were manipulated in a blocked fashion. Animals

transitioned among three different block types: (1) attention trials using cue set 1, (2) selection

trials using cue set 1, and (3) selection trials using cue set 2. The sequence of blocks was random.

Transitions between blocks occurred after the animal had performed 60 correct trials of block type

1 (attention) or 30 correct trials for block types 2 and 3 (selection), balancing the total number of

attention and selection trials.

The eye position of the animals was continuously monitored at 1 kHz using an Eyelink 1000

Plus eye-tracking system (SR Research). The animals had to maintain their gaze within a 2◦circle

around the central cross during the entire trial until the response. If they did not maintain fixation,

the trial was aborted and the animal received a brief timeout.

We analyzed all completed trials, defined as any trial on which the animal successfully maintained

fixation and made a saccade to the color wheel, regardless of accuracy. Monkey 1 completed 9,865

trials over 10 sessions and Monkey 2 completed 11,131 trials over 13 sessions.

As shown in Fig. S4.1, the behavior of the two animals was qualitatively similar and so we pooled

data across animals for all analyses.
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4.5.3 Surgical procedures and recordings

Animals were implanted with a titanium headpost to immobilize the head and with two titanium

chambers for providing access to the brain. The chambers were positioned using 3D models of the

brain and skull obtained from structural MRI scans. Chambers were placed to allow for electro-

physiological recording from LPFC, FEF, area 7a/b, and V4.

Epoxy coded tungsten electrodes were used for both recording and microstimulation. Electrodes

were lowered using a custom built microdrive assembly that lowered electrodes in pairs from a single

screw. Recordings were acute; up to 80 electrodes were lowered through intact dura at the beginning

of each recording session and allowed to settle for 2-3 hours before recording. This enabled stable

isolation of single units over the session. Broadband activity (sampling frequency = 30 kHz) was

recorded from each electrode. We performed 13 recording sessions in Monkey 2 and 10 sessions in

Monkey 1.

After recordings were complete, we confirmed electrode locations by performing structural MRIs

after lowering two electrodes in each chamber into cortex. Based on the shadow of these two

electrodes, the position of the other electrodes in each chamber could be reconstructed. Electrodes

were categorized as falling into LPFC, FEF, 7a, and V4 based on anatomical landmarks.

In separate experiments, we identified which electrodes were located in FEF using electrical

microstimulation. Based on previous work(Bruce and Goldberg, 1985), we defined FEF sites as

those for which electrical stimulation elicited a saccadic eye movement. Electrical stimulation was

delivered in 200 ms trains of anodal-leading bi-phasic pulses with a width of 400 s and an inter-

pulse frequency of 330 Hz. Electrical stimulation was delivered to each electrode in the frontal well

of each animal and FEF sites were identified as those sites for which electrical stimulation (< 50

µA) consistently evoked a saccade with a stereotyped eye movement vector at least 50% of the

time. Untested electrode sites (e.g., from recordings on days with a different offset in the spatial

distribution of electrodes) were classified as belonging to FEF if they fell within 1 mm of confirmed

stimulation sites and were positioned in the anterior bank of the arcuate sulcus (as confirmed via

MRI).

4.5.4 Signal preprocessing

Electrophysiological signals were filtered offline using a 4-pole 300 Hz high-pass Butterworth filter.

For Monkey 1, to reduce common noise, the voltage time series x recorded from each electrode

was re-referenced to the common median reference(Rolston et al., 2009) by subtracting the median
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voltage across all electrodes in the same recording chamber at each time point.

The spike detection threshold for all recordings was set equal to −4σn, where σn is an estimate

of the standard deviation of the noise distribution:

σn = median(
|x|

0.6745
) (4.1)

Timepoints at which x crossed this threshold with a negative slope were identified as putative

spiking events. Repeated threshold crossings within 32 samples (1.0667 ms) were excluded. Wave-

forms around each putative spike time were extracted and were manually sorted into single units,

multi-unit activity, or noise using Plexon Offline Sorter (Plexon, Dallas, Texas).

4.5.5 Statistical procedures

All parametric tests were two-sided. Nonparametric tests were based on resampling trials with

replacement or permuting trial labels and were one-sided, unless otherwise indicated.

4.5.6 Mixture modeling of behavioral reports

Behavioral errors on delayed estimation tasks are thought to be due to at least three sources of

errors(Bays et al., 2009; Zhang and Luck, 2008): imprecise reports of the cued stimulus, imprecise

reports of the uncued stimulus, and random guessing (i.e., from ‘forgotten’ stimuli). To estimate the

contribution of each of these sources of error, we used a three-component mixture model to model

behavioral reports (Bays et al., 2009):

p(θ̂) = (1− γ −B)φσ(θ̂ − θ) + γ
1

2π
+B

1

m
φσ(θ̂ − θ∗) (4.2)

where θ is the color value of the cued stimulus in radians, θ̂ is the reported color value, θ∗ is

the color value of the uncued stimulus, γ is the proportion of trials on which subjects responded

randomly (i.e., probability of guessing, p(Guess)), B is the proportion of trials on which subjects

reported the color of the uncued stimulus (i.e., probability of ‘swapping’, p(Swap)), and φσ is a von-

mises distribution with a mean of zero and a standard deviation σ (inverse precision). Bootstrapped

distributions of the maximum likelihood values of the free parameters γ, B, and σ were generated

by fitting the mixture model independently to the behavioral data from each session and then

resampling the best fitting parameter values with replacement across sessions. In this way, the

distribution shows the uncertainty of the mean parameters across sessions.
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As noted in the main text, if the animal was able to select an item from memory earlier in the trial,

then this reduced the error in the animal’s behavioral response (Fig. 4.1d-e). Behavioral modeling

showed earlier cues improved the precision of memory reports (Fig. S4.2b, β = 3.95 + /− 1.88 SEM,

p = 0.012, bootstrap) but did not significantly change the probability of forgetting (i.e. random

responses; Fig. S4.2b, β = 0.03 + / − 0.03 STE, p = 0.126, bootstrap). Furthermore, we found

that memory reports were more accurate in the attention condition than in the selection condition

(Fig. 4.1b-c). Here, behavioral modeling showed the improvement with attention was due to an

increase in the precision of memory reports and a reduction in forgetting (i.e. fewer random reports;

Fig. Fig. 4.2b).

4.5.7 Calculation of cue modulation indices

We used a cue modulation index (MIcue) to describe how each neuron’s firing rate was modulated

by cuing condition (‘upper’ or ‘lower’), defined as:

MIcue =
FRupper − FRlower
FRupper + FRlower

(4.3)

where FRupper and FRlower are a neuron’s mean firing rate on trials in which the upper or lower

stimulus was cued as task relevant, respectively. Modulation indices were either computed using

trials pooled across all selection trials (Fig. S4.3a) or calculated separately for each of the three

block types (Fig. S4.3b-c, attention with cue set 1, selection with cue set 1, and selection with cue

set 2, see above). This analysis included all neurons that were recorded for at least 10 trials per

each cued location. The significance of each neuron’s modulation index (Fig. S4.3a) was assessed by

comparing to a null distribution of values generated by randomly permuting location labels (upper or

lower) across trials (1000 iterations). To test if a region had more significant neurons than expected

by chance, the percentage of significant neurons was compared to that expected by chance (the alpha

level, 5%).

4.5.8 Calculation of cued location

We used linear classifiers to quantify the amount of information about the location of the cued

stimulus (upper or lower) in the population of neurons recorded from each brain region (Fig. 4.2c-

d). This analysis included all neurons that were recorded during at least 60 trials for each cueing

condition (upper or lower) in each block type (attention with cue set 1, selection with cue set 1,

and selection with cue set 2, see above). On each of 1000 iterations, 60 trials from each cueing

88



condition and block type were sampled from each neuron with replacement. The firing rate from

those trials, locked to cue onset, was assembled into a pseudo-population by combining neurons

across sessions such that pseudo-trials matched both block and cue condition. For each timestep,

a logistic regression classifier (as implemented by fitclinear.m in MATLAB) with L2 regularization

(λ = 1
60 ) was trained to predict the cueing condition (upper or lower) using pseudo-population

data from one block (e.g., selection with cue set 1) and tested on held out data from another block

(e.g., selection with cue set 2). Classification accuracy (proportion of correctly classified trials) was

averaged across reciprocal tests (e.g., train on selection with cue set 2, test on selection with cue set

1).

We used a randomization test to test for significant differences in the onset time of above-chance

classification across regions (Fig. 4.2e). For each pair of regions, we computed the difference in time

of first-significance (p < 0.05, using the bootstrap procedure describe above) for each region (the

lag). To generate a null distribution of lags, we randomly permuted individual neurons between

the two regions and then repeated the above bootstrap procedure to determine the lag in above-

chance classification for each permuted dataset. 1000 random permutations were used for each pair

of regions. Significance was assessed by computing the proportion of null lags of greater magnitude

than the observed lag. Note that this randomization procedure controls for differences in the number

of features (neurons) across regions.

To assess the discriminability of the upper and lower attention conditions (Fig. 4.4), we calculated

the 10-fold cross validated classification accuracy (averaged across folds). To provide an estimate of

variability we repeated this analysis 1,000 times, each time with a different partition of trials into

folds.

4.5.9 Quantification of color information

We adapted previous work(Tort et al., 2010) to define a color modulation index (MIcolor) that

describes how each neuron’s firing rate was modulated by the colors of the remembered stimuli.

After dividing color space into N = 8 bins, MIcolor is defined as:

MIcolor =

∑N
c=1 zc log(Nzc )

log(N)
(4.4)

where zc is a neuron’s normalized mean firing rate rc across trials evoked by colors in the cth

bin:
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zc =
rc∑N
c=1 rc

(4.5)

MIcolor is a normalized entropy statistic that is 0 if a neuron’s mean firing rate is identical across

all color bins and 1 if a neuron only fires in response to colors from one bin. To control for differences

in average firing rate and number of trials across neurons, we z-scored this metric by subtracting by

the mean and dividing by the standard deviation of a null distribution of MI values. To generate

this null distribution, the color bin labels were randomly shuffled across trials and the MI statistic

was recomputed (1,000 times per neuron).

Z-scored color modulation indices were computed separately for each time point, trial type (at-

tention or selection), and stimulus type (selected/non-selected/attended/non-attended, Fig. 4.3b

and Fig. S4.5). This analysis included neurons that were recorded for at least 10 trials in each of

these conditions. Selectivity for color was computed without respect to the spatial location of the

stimulus (upper or lower). Computing selectivity for colors only presented at a neuron’s preferred

location did not qualitatively change the results. Z-scored modulation indices were compared to

zero or across conditions via t-test (Fig. 4.3b). We corrected for multiple comparisons over time

using cluster-correction(Maris and Oostenveld, 2007). Briefly, the significance of contiguous clusters

of significant t-tests was computed by comparing their cluster mass (the sum of the t-values) versus

that expected by chance (randomization test). Additionally, to summarize changes in selected and

non-selected color information after cue onset, we averaged color information for each neuron in

two time periods (-300 to 0 ms pre-cue and 200 to 500 ms post-cue) and tested the difference of

these values (post-pre) against zero by bootstrapping the mean difference in color information across

neurons (Fig. S4.9).

To determine if a neuron displayed significant selectivity for the color at one particular location

(upper/lower), we calculated the z-scored information about the cued color at each timepoint over

the interval from 0 to 2.5 seconds post-stimulus onset independently for each location. Color se-

lectivity was measured across all conditions, including attention, selection, and single-item trials.

As described above, we used a cluster correction to correct for multiple comparisons across time.

Neurons with significant color selectivity (p < 0.05) at any point during this interval were deemed

color selective. Binomial tests compared the proportion of neurons with significant color selectivity

for at least one of the two locations to a conservative null proportion of 10% (for two tests with an

alpha of 0.05, one test for each location).

To determine if independent populations of LPFC neurons encoded the upper and lower color
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during the pre-cue period of selection trials, we counted the number of neurons with significant

cluster-corrected selectivity during the 500 ms period before cue onset. Of the 607 neurons entering

the analysis, 112 (18.5%) carried information about the upper color and 99 (16.3%) carried informa-

tion about the lower color. Of these, 35 (5.8%) carried information about both the upper and lower

color. A binomial test compared this proportion (5.8%) to that expected by random assignment of

top- and bottom-selectivity (i.e., 18.5%× 16.3% ≈ 3.0%).

To quantify the amount of information each neuron carried about the animal’s reported color,

we followed the same approach as for stimulus color, except that responses were binned by the color

reported by the animal rather than by the color of the cued or uncued stimulus (Fig. 4.3c).

To compare the amount of color information in firing rates across the attention and selection

conditions (Fig. S4.6), we computed the z-scored color modulation indices as described above for each

of the four conditions of interest (selected, non-selected, attended, and non-attended colors). Trial

counts were matched across these four conditions to avoid biases in the color information statistic.

To assess relative information about cued (selected and attended) and uncued (non-selected and

non-attended) color information, we computed the difference in color information between each pair

of conditions, for each neuron. The average difference across all neurons was then tested against zero,

using the cluster correction described above to correct for multiple comparisons across time(Maris

and Oostenveld, 2007).

To compare the amount of color information in firing rates when behavioral performance was

relatively accurate or inaccurate (Fig. S4.7-8), we divided selection trials into two groups based on

the accuracy of the behavioral report. Trials within each session were split by the median accuracy

for that session. Z-scored color modulation indices were computed separately for each split-half of

trials (Fig. S4.7). As above, the same number of trials were used for all four conditions (more/less

accurate x selected/non-selected). Additionally, to quantify the effect of selection, the difference in

color information for selected and unselected colors was computed for each group of trials separately

(more or less accurate). This selected-unselected difference was then tested against zero to measure

the effect of selection and tested between the two groups of trials to measure the effect of behavioral

accuracy. Comparisons were done with a t-test across all neurons and used the cluster correction

described above to correct for multiple comparisons across time(Maris and Oostenveld, 2007).
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4.5.10 Principal components analysis of color representations

We were interested in understanding the geometry of mnemonic representations of color across the

two possible stimulus locations (upper or lower). To explore this, we examined the response of the

population of neurons as a function of the color and location of the cued stimulus. The fidelity of

these population representations depended on the behavioral performance of the animal. Therefore,

for all principle component analyses, we divided trials based on the accuracy of the behavioral

report (median split for each session, as above) and separately analyzed trials with lower angular

error (higher accuracy, Fig. 4.4) and higher angular error (lower accuracy, Fig. S4.11).

Trials were sorted into B = 4 color bins and L = 2locations (top or bottom), yielding BxL = M

(8) total conditions. To visualize these population representations, we projected the population

vector of mean firing rates for each of these 8 conditions into a low-dimensional coding subspace

(Fig. 4.4a and Fig. S4.12c, similar to previous work (Murray et al., 2017). For each timestep, we

defined a population activity matrix X as an M ×N matrix, where N is the number of neurons:

X =


r(c1,1) − r̄

...

r(cB,L) − r̄

 (4.6)

Here, r(cB,L) is the mean population vector (across trials) for the condition corresponding to

color bin B and location L and r̄ is the mean population vector across conditions (i.e., the mean of

each column is zero).

The principle components of this matrix were identified by decomposing the covariance matrix

C of X using singular value decomposition (as implemented by pca.m in MATLAB):

C = PDPT (4.7)

where each column of P is an eigenvector of C and D is a diagonal matrix of corresponding

eigenvalues. We constructed a reduced (K = 3) dimensional space whose axes correspond to the

first K eigenvectors of C (i.e., columns of P, PK , assuming eigenvectors are ordered by decreasing

explained variance). These first 3 eigenvectors explained an average of 65% of the variance in the

mean population response across all examined timepoints. We then projected the population vector

for a given condition into this reduced dimensionality space:

zK = PT
K(r(cB,L) − r̄) (4.8)
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where zK is the new coordinate along axis K in the reduced dimensionality space.

We observed that, when visualized in the reduced dimensionality space, the population repre-

sentations for each color bin B within a given location L tended to lie on a plane, referred to as the

‘color plane’ in the main manuscript (Fig. 4.4a). To identify the best fitting plane, we defined a new

population activity matrix YL for each location L with dimensions B ×K:

YL =


z(c1,L) − z̄L

...

z(cB,L) − z̄L

 (4.9)

where z(cB,L) is the population vector for the condition corresponding to color bin B and location

L in the reduced dimensionality space and z̄L is the mean population vector across color bins for

that location (i.e., the mean of each column is zero). The principle components of this matrix were

calculated in the same manner as above and the first two principle components were the vectors

that defined the plane-of-best-fit to the points defined by the rows of YL.

If the vectors defining the plane-of-best-fit for the upper item are v1 and v2 and those for the

lower item are v3 and v4, then the cosine of the angle between these two color planes can be

calculated as:

cos(θ) = (v1 × v2) • (v3 × v4) (4.10)

For all analyses, population vectors were based on pseudo-populations of neurons combined

across sessions. Pseudo-populations were created by matching trials across sessions according to

the color and location of the cued stimulus as described above, and following previous work(Rigotti

et al., 2013). This analysis only included neurons that were recorded for at least 10 trials for

each conjunction of color and location. Confidence intervals for cos(θ) were calculated using a

bootstrapping procedure. On each of 1000 iterations, 10 trials from each of the 8 conditions were

sampled from each neuron with replacement. The average firing rates across these sampled trials

provided the mean population vector for that condition on that iteration. To assess how cos(θ)

changed around cue onset (Fig. 4.4c and Fig. S4.11), we used a logistic regression model of the form:

cos(θ) =
1

1 + exp(−(β0 + β1t))
(4.11)

where t is time relative to cue onset. This model was fit to values of cos(θ) computed at
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each timepoint in the interval from 500 ms pre- to 1000 ms post-cue onset on each bootstrap

iteration (described above). This yielded a bootstrapped distribution of β1 estimates which could

be compared to zero or across the two groups of trials with more and less accurate behavioral

responses (Fig. S4.11).

To define the color subspace in the full neuron-dimensional space, we defined a (B = 4)xN mean

population activity matrix for each location L:

WL =


r(c1,L) − r̄L

...

r(cB,L) − r̄L

 (4.12)

The color subspace was defined as the first two principle components of WL.

These subspaces were used for two analyses. First, we projected the population vectors of color

responses from one item into the color subspace for the other item (Fig. 4.4d). For example, the

population vector response to colors of the upper item were projected into the color subspace of

the lower item, defined as the first two principal components of Wlower, and vice-versa (Fig. 4.4d).

Second, by defining the color subspace of each item at different timepoints ti, we could examine how

color representations evolved during the trial (Fig. Fig. 4.4e-f and Fig. S4.10).

Finally, we were interested in quantifying the separability of colors in a given subspace. As seen

in Fig. 4.4d-e, the population representation of the four color conditions, projected into the subspace,

form the vertices of a quadrilateral with the edges of the quadrilateral connecting adjacent colors on

the color wheel (e.g., Fig. 4.4d). To measure separability of the colors, we computed the area of this

quadrilateral (polyarea.m function in MATLAB). Bootstrapped distributions of these area estimates

were obtained by resampling trials with replacement from each condition before re-computing WL.

4.5.11 Correlation of color representations

We wanted to understand how similarly color was represented across the upper and lower locations

over the course of the trial. To explore this, selection or attention trials were binned based on

the color and location of the cued stimulus and then randomly partitioned into two halves. These

split halves were used to estimate the degree of noise in the data (Fig. S4.12, described below).

Specifically, trials were sorted into B = 4 color bins, L = 2 locations (top or bottom), and H = 2

halves, yielding B×L×H = M total conditions. For each of these conditions, at a given timepoint

of interest, we computed the average population vector r(cB,L,H).
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We then computed the average correlation between each population vector and the population

vectors corresponding to the same color bin at the other location (Fig. 4.4b and Fig. S4.12)

ρcross =
1

B2H

H∑
i=1

H∑
j=1

B∑
b=1

corr(r(cb,1,i)− 〈r(cB,1,i)〉{B}, r(cb,2,j)− 〈r(cB,2,j)〉{B}) (4.13)

where 〈·〉{B} is the average across the set of color bins B. In other words, for each set of B

population vectors corresponding to a particular half of the data H and location L, we subtracted

the mean across bins to center the vector endpoints around zero. Thus, ρcross quantifies to what

extent color representations are similarly organized around their mean across the two locations.

To obtain an upper bound on potential values of ρcross given the degree of noise in the data, we

also computed the average correlation of each population vector with itself across the two halves:

ρself =
1

BL

B∑
b=1

L∑
l=1

corr(r(cb,l,1)− 〈r(cB,l,1)〉{B}, r(cb,l,2)− 〈r(cB,l,2)〉{B}) (4.14)

Finally, to understand how similarly color was represented across the two cueing conditions, trials

were sorted into B = 4 color bins, L = 2 locations (top or bottom), and C = 2 cuing conditions

(attention/selection). For each of these conditions, at a given timepoint of interest, we computed

the average population vector r(cB,L,C). We then computed the average correlation between each

population vector and the population vectors corresponding to the same color bin at either the same

or different location in the other task (Fig. S4.13):

ρatt,sel =
1

B2L

L∑
i=1

L∑
j=1

B∑
b=1

corr(r(cb,i,1)− 〈r(cB,i,1)〉{B}, r(cb,j,2)− 〈r(cB,j,2)〉{B}) (4.15)

To compare the similarity of color representations on selection trials to pre-target attention color

representations, we computed this correlation between (1) the response on attention trials, for all

timepoints falling within the interval from -300 ms to 0 ms before the onset of the response wheel,

and (2) the response on selection trials at two different timepoints: before selection (from -300 to 0

ms before the cue) and after selection (from -300 to 0 ms before the onset of the response wheel).

Correlation was measured between each timepoint across windows and then averaged across all pairs

of timepoints.

As above, population vectors were pseudo-populations of neurons combined across sessions, where
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trials across sessions were matched according to color bin and location(Rigotti et al., 2013). This

analysis only included neurons that were recorded for at least 10 trials for each conjunction of color

and location. Confidence intervals for ρcross, ρself , and ρatt,sel were calculated with a bootstrap.

On each of 1000 iterations, and for each neuron and condition (color-location-half conjunction), the

entire population of trials in that condition was resampled with replacement. The average firing

rates across these sampled trials provided the mean population vector for that condition on that

iteration. As with principle components analyses, we divided trials based on the accuracy of the

behavioral report (median split of trials for each session) and the presented results reflect analysis

of trials with lower angular error, unless otherwise noted.
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4.8 Supplementary figures
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Figure S4.1: (A) Mean absolute angular error and (B) mean mixture model parameter fits for each
animal. Violin plots depict bootstrapped distribution. * p < 0.05, ** p < 0.01, *** p < 0.001.
Although monkey 1 displayed slightly better performance than monkey 2, the animals displayed
similar patterns of performance across conditions.
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Figure S4.2: Mixture model parameter fits of behavior pooled across animals for the (A) main task
shown in Fig. 4.1a and (B) the retro-cue timing manipulation shown in Fig. 4.1d. Earlier cues
improved the precision of memory reports (β = 3.95 = /− 1.88 SEM, p = 0.012, bootstrap) but did
not significantly change the probability of forgetting (i.e. random responses; β = 0.03 + / − 0.03
STE, p = 0.126, bootstrap). · p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001.
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Figure S4.3: (A) Percent of neurons in each region of interest. with firing rates that were significantly
modulated by the selected location after cue onset (trials pooled across cue set 1 and 2). For each
neuron, we quantified location selectivity using a modulation index (see methods) and compared
this value to a null distribution by permuting location labels across trials. All four regions showed
strong selectivity: LPFC had 159 out of 590 neurons selective; FEF: 37/169, 7a/b: 49/301, V4:
62/318, all p < 0.001 for binomial test against chance of 5%. (B) Correlation of modulation indices
for selection cue set 1 and 2. Positive modulation indices indicate that a neuron had a higher firing
rate in response to the “upper” cue within a particular cue set, and negative modulation indices
indicate that a neuron had a higher firing rate in response to the “lower” cue within a particular cue
set. Positive correlations indicate that neurons responded to the selected location in a consistent
fashion across cue sets. (C) Correlation of modulation indices for selection cue set 2 and attention
cue set 1. Positive correlations indicate that neurons coded for the selected location in a consistent
fashion across cue sets and conditions (attention/selection).
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Figure S4.4: (A) To confirm that the neural responses to the two cue conditions were discriminable
on attention trials, we calculated the cross-validated classification accuracy (10-fold, one example
fold shown for clarity). (B) Mean classification accuracy for each brain region, relative to cue onset.
Error bars reflect the standard deviation across 1,000 iterations, each with a different partition of
trials into folds. Note that this analysis captures a mixture of information about the control of
attention (up or down) and information about the visual appearance of the cue itself (a line oriented
+/- 45 degrees). Importantly, these results show these two conditions are separable in all brain
regions, and so failures in cross-classification performance (Fig. 4.2d, purple traces) are not due to
poor separability of these two conditions.
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Figure S4.5: Mean z-scored color information for the attended and non-attended color on attention
trials. Error bars are standard error of the mean. Horizontal bars indicate significant information
for the attended item (light orange), the non-attended item (dark orange), and significant differences
in information about the attended and non-attended items (black). Bar width indicate significance:
p < 0.05, 0.01, and 0.001 for thin, medium, and thick, respectively.
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Figure S4.6: Difference in z-scored color information between selection and attention trials for
the cued item (selected/attended; light purple) and uncued item (non-selected/non-attended; dark
purple). Positive values indicate there was more information about an item on selection trials.
Error bars are standard error of the mean, created by bootstrapping across cells (see methods for
details). Horizontal bars indicate significant differences from zero (i.e. differences between selection
and attention) for the cued item (light purple) and the non-cued item (dark purple). Bar width
indicate significance: p < 0.05, 0.01, and 0.001 for thin, medium, and thick, respectively.
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Figure S4.7: Mean z-scored color information for the selected (light blue) and non-selected color
(dark blue), separated into trials with more accurate behavioral responses (left column; error was
less than median error) and less accurate behavioral responses (right column; error was greater than
median error). Plots follow Fig. 4.4b. Horizontal bars indicate significant information for the selected
item (light blue), the non-selected item (dark blue), and significant differences in information about
the selected and non-selected items (black). Bar width indicate significance: p < 0.05, 0.01, and
0.001 for thin, medium, and thick, respectively.
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Figure S4.8: Difference in z-scored color information between the selected and non-selected item
for more accurate and less accurate trials. As in Fig. S4.7, trials were split based on angular error
(relative to median error). Positive values indicate there was more information about the selected
item than the non-selected item. Error bars indicate standard error of the mean. Horizontal bars
indicate significant differences between more and less accurate trials. Bar width indicate significance:
p < 0.05, 0.01, and 0.001 for thin, medium, and thick, respectively.
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Figure S4.9: Selection enhanced the representation of the selected item in frontal and parietal regions
and reduced the representation of the un-selected item in FEF. Y-axis shows the increase in color
information after selection (post-cue period: 200 to 500 ms after cue offset), relative to information
before selection (pre-cue period: -300 to 0 ms before cue onset). Violin plots show the distribution
of this difference (bootstrapped across neurons). * p < 0.05, ** p < 0.01, *** p < 0.001.
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color subspace. Lower color subspace was defined as a 2D space that maximally explained variance
across the four ‘lower’ colors (see methods for details). Subspace was defined either before or after
selection, as in Figure 4E. As for the ‘upper’ color (Fig. 4.4e), temporal cross generalization was
poor, suggesting the color information was represented in a different subspace by the end of the
trial.
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Figure S4.11: (A) The upper and lower color planes do not align on inaccurate trials. Figure follows
Fig. 4.4c, but shows data for trials in which absolute angular error was greater than the median error.
Black markers show the cosine of the angle between the two color planes around the time of cue onset.
Black line shows best-fitting logistic function. (B) Difference in the slope of the logistic fit (i.e., the
coefficient for time) between trials in which angular error was ‘better’ or ‘worse’ than the median
(red line). Null distribution (gray histogram) was generated by randomly permuting the accuracy
label (‘better’ or ‘worse’) between population vectors for the same color-location conjunction. Trials
in which the animal was more accurate were associated with a greater increase in the cosine of the
plane angle (i.e. a greater increase in alignment) around cue onset.

107



A

B

-0.5 0 0.5 1
stimulus onset (s)

-0.1

0

0.1

0.2

0.3

co
rre

la
tio

n 
be

tw
ee

n 
co

lo
rs

-0.5 0 0.5 1
stimulus onset (s)

-0.1

0

0.1

0.2

0.3

co
rre

le
at

io
n 

be
tw

ee
n 

co
lo

rs

0 0.5 1
cue onset (s)

0 0.5 1
target onset (s)

0 0.5 1
target onset (s)

-20
0

location-color
PC1

20

-20

-20

0

lo
ca

tio
n-

co
lo

r P
C

3

0
location-color PC2

20

20

C

Selection

Attention Attention (post-stim)

self
cross-location

self
cross-location

a�ended upper

a�ended down

Figure S4.12: (A) Correlation of population vectors representing colors at the same location (self; red
line) or between locations (cross-location; blue line) on selection trials. Correlations were measured
after subtracting the mean vector at each location (as in Fig. 4.4b). Self-correlation was computed
on held-out data and provides an upper-bound on the between-location correlation values, given the
noise level. Bars reflect uncorrected t-tests (p < 0.05) for each correlation type vs zero (red and
blue) and between each other (black). (B) Same as in A, but for attention trials. (C) Population
responses 200 ms after stimulus offset on attention trials (projected into a reduced dimensional space
for visualization). Markers indicate mean position of population activity for each condition (binned
by the color and location of the attended item) in a subspace spanned by the first three principle
components that explain the most variance across all 8 conditions.
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Figure S4.13: Mean correlation between the population representations for each color across at-
tention and selection tasks (after subtracting the mean vector at each location, as in Fig. 4.4b and
Fig. S4.12, see methods for details). Violin plots reflect the bootstrapped estimate of the distribution
about the mean. The mean correlation was computed between the color representations taken from
the 300 ms before the onset of the response wheel on attention trials and the color representations
taken from either a pre-selection period (left distribution; -300 to 0 ms pre-cue) or post-selection
period (right distribution; -300 to 0 ms before response wheel onset).
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Chapter 5

General Discussion

The work in this thesis examines how two cognitive processes, expectation and attention, transform

perception, and if these processes similarly impact memory. We found that expectations transform

perception in a manner consistent with Bayesian inference; perceptual representations, as inferred

via behavioral reports and neural decoding, reflected a weighted average of sensory and prior infor-

mation. Behavioral analyses revealed that visual memory is governed by similar principles, with the

relative weight of prior information increasing with the amount of time that a representations is held

in memory. These results suggest that a process akin to Bayesian inference is applied continuously

in time to compensate for the accumulation of noise in perception and memory. We found that these

dynamics were well described by a model in which memories drift towards attractor states reflecting

expected stimuli, suggesting neural architectures that could support this process (Brody et al., 2003;

Chaudhuri and Fiete, 2016).

In the realm of attention, we found a surprising correspondence between perception and memory.

In both cases, attention transformed neural representations such that attended items were coded

using completely distinct patterns of neural activity (i.e., attended representations were coded in a

distinct subspace). These results suggest that transformations in state space provide a means by

which representations can be ‘gated’ from a passive state to an active state in which they can affect

cognitive or motor preparatory activity, in contrast to accounts postulating gating via toggling of

cortical excitability (e.g., Cohen et al., 1990; Hazy et al., 2007).

Overall, these studies suggest that while we can expect cognitive transforms observed in visual

perception to generalize to other domains, we should not expect these computations to be imple-

mented by monolithic mechanisms. For example, we observed that recently changed environmental
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statistics were manifest in memory but not perception (Fig. 3.7f), suggesting that expectations affect

perception and memory via unique mechanisms that adapt over different timescales. And, unlike

perceptual attention, mnemonic attention does not bias competitive dynamics (Fig. 4.3b). Thus,

mechanisms underlying canonical computations will have to be interrogated in a case-by-case basis

across perception, memory, and other domains such as planning, long-term memory, and motor

control.

These studies suggest some immediate lines of follow up. First, how is the accumulation of

expectation across perception and memory reflected in neural systems? The electrophysiological

recordings described in Chapter 4 can be used to address this question by quantifying the extent

to which neural activity tracks the latent color memories inferred from the dynamical model. For

example, activity in V4 may track the accumulation of biases during perception and activity PFC

may track the accumulation of biases in memory (despite the fact that both regions carry some

information about the stimulus throughout the entire trial).

Additionally, future work should further specify the extent to which expectations bias perception

and memory in an optimal manner. While the dynamical model described in Chapter 3 quantifies

the strength of expectations during perception and memory, a precise mapping between this model

and classic Bayesian decision models (e.g., Ma, 2019) is unclear. Specifying this mapping would

reveal whether expectations during perception and/or memory are weighted in an optimal manner

and would facilitate comparison with the rest of the literature.

Recent work has revealed that attention fluctuates rhythmically during perception (Buschman

and Miller, 2009; Fiebelkorn et al., 2018; Fiebelkorn et al., 2013). It is unclear whether attention

is rhythmically allocated to items in memory in a similar manner. This could be tested using the

electrophysiological recordings described in Chapter 4 by quantifying the amount of information

about each memory item over time on a trial-by-trial basis and looking for significant peaks in the

Fourier transform of these traces.

Finally, at the time of this writing there an active debate about the role of prefrontal cortex in

working memory (Christophel et al., 2017). Prominent competing accounts include: (1) prefrontal

cortex does not carry information about the content of working memory (2) prefrontal cortex main-

tains categorical information in working memory (3) prefrontal cortex maintains categorical as well

as fine sensory information in working memory. The results presented in chapter 4 are inconsistent

with the first account; prefrontal cortex clearly carried information about the remembered color.

However, it is unclear from these data whether PFC carries fine sensory information because biases

in perception and memory result in partially discretized color representations (Chapter 3). Indeed,
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the pervasive presence of biases across different perceptual spaces (Wei and Stocker, 2017) suggests

that partial categorical encoding of fine sensory information may be pervasive. The fine sensory

/ categorical distinction should itself be understood in continuous rather than dichotomous terms.

Nevertheless, a new experiment could address this question by presenting a memory stimulus and

retrospectively cuing the subject to render a relatively categorical or fine sensory judgment. If pre-

frontal cortex is important for the maintenance of categorical but not fine sensory information, one

might expect a double dissociation where PFC carries more memory information in the categorical

condition and sensory regions more memory information in the fine sensory condition.
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