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Abstract

■ Humans perceive expected stimuli faster and more accurately.
However, themechanismbehind the integrationof expectationswith
sensory information during perception remains unclear. We investi-
gated the hypothesis that such integration depends on “fusion”—
the weighted averaging of different cues informative about stimulus
identity. We first trained participants to map a range of tones onto
faces spanning a male–female continuum via associative learning.

These two features served as expectation and sensory cues to sex, re-
spectively. We then tested specific predictions about the conse-
quences of fusion by manipulating the congruence of these cues in
psychophysical and fMRI experiments. Behavioral judgments andpat-
terns of neural activity in auditory association regions revealed fusion
of sensory and expectation cues, providing evidence for a precise
computational account of how expectations influence perception. ■

INTRODUCTION

Experience and learning guide perception, allowing for fast
and accurate processing of sensory input that is noisy and
ambiguous (Nobre& Stokes, 2019;Oliva&Torralba, 2007).
As a result, it has long been suggested that perception may
be best understood as a form of probabilistic inferences
about the outside world, rather than a veridical representa-
tion of sensory inputs. However, the computations by
which expectations and sensory information are combined
to refine perception remain an active area of investigation
(Press, Kok, &Yon, 2020a; de Lange, Heilbron, &Kok, 2018).

Bayesian inference describes the optimal means by
which an observer can combine noisy sensory information
with prior expectations to infer the state of the world.
Strikingly, human behavior in perceptual tasks is often con-
sistent with a Bayesian observer (e.g., Girshick, Landy, &
Simoncelli, 2011; Stocker & Simoncelli, 2006), engendering
proposals that neural systems combine sensory inputs and
expectations in this optimal fashion (for a recent review,
see Aitchison & Lengyel, 2017).

Human neuroimaging has revealed that perceptual rep-
resentations show characteristics of Bayesian inference.
The result is a more precise representation that is biased
toward prior expectations. In visual cortex, expected stim-
uli are more easily decoded from patterns of neural activity
(Brandman & Peelen, 2017; Hindy, Ng, & Turk-Browne,
2016; Kok, Jehee, & de Lange, 2012) and reconstructed
neural representations track prior expectations (van Bergen,
Ma, Pratte, & Jehee, 2015; Kok, Brouwer, van Gerven, &
Lange, 2013). However, prior studies have not indepen-
dentlymanipulated sensory inputs and learned expectations

in a quantitative manner, leaving unresolved the mecha-
nism by which these cues are integrated.
We hypothesized that perceptual representations result

from weighted averaging of feature estimates from sensa-
tion and expectation. In developing this hypothesis, we
were inspired by the multisensory integration and cue
combination literatures, which contain rigorous methods
for evaluating fusion (Murphy, Ban, & Welchman, 2013;
Ban, Preston, Meeson, & Welchman, 2012). The key inno-
vation of our study derives from examining fusion between
an expectation cue and a sensory cue, whereas this prior
work tested fusion between two sensory cues (e.g., depth
from motion and disparity; Ban et al., 2012). After design-
ing a learning paradigm that induces tone-based expecta-
tions about the sex of faces (Experiment 1), we tested for
the fusion of these estimates of sex from tones and faces
with model-based analyses of discriminability in behavior
(Experiment 2) and the brain (Experiment 3).

METHODS

Experiment 1

The purpose of Experiment 1 was to validate that we could
establish a linear mapping between tones and faces
through learning and that the resulting associations would
induce expectations that bias behavior. Forty-eight human
participants participated in this study (28 women, mean
age = 19.6 years old). All had normal or corrected-to-
normal vision. Informed consent was obtained according
to a protocol approved by the Princeton University institu-
tional review board.
Visual stimuli consisted of 41 sex-morphed face images

(Zhao, Seriès, Hancock, &Bednar, 2011). Thesemorphswere
generated by interpolating features between a composite1Princeton University, 2Yale University
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male face and a composite female face. The sex of the faces
was coded using an arbitrary numerical index ranging from
−1 to 1 in 0.05 increments, with−1 denoting the composite
male face and 1 denoting the composite female face. Faces
were presented centrally at fixation and spanned 4° of visual
angle. We were not specifically interested in facial sex, but
chose this domain because it is amenable to multivariate de-
coding from fMRI (Contreras, Banaji, & Mitchell, 2013; Kaul,
Rees,& Ishai, 2011) andbecause faceperception is linkedwith
a well-defined cortical network (Dekowska, Kuniecki, &
Jaskowski, 2008).
Auditory stimuli consisted of 41 pure tones correspond-

ing to musical notes D1 to B♭7 (36.7–3951 Hz) in whole-step
intervals. This tone space is perceptually uniform according
to the Musical Instrument Digital Interface pitch standard.
The 41 tones were also assigned a numerical index ranging
from −1 to +1 in 0.05 increments. For all experiments, the
tone–face mapping was counterbalanced such that higher
frequency tones were mapped to more masculine faces
for half of the participants and to more feminine faces for
the other half of participants. The amplitude of the tone
stimuli was adjusted to correct for increasing subjective
loudness with increasing pitch.
Participants completed 325 trials of a delayed estimation

task (Figure 1A). On each trial, after being presented with a
tone–face pair, participants had to morph a second face
stimulus to match the sex of the face they had just seen
as closely as possible. Participants morphed the face by
dragging a mouse cursor to the left or right edge of the
screen, which either smoothly incremented or decremen-
ted the sex of the face at the center of the screen. If a partic-
ipant morphed the face to the end of the space, then
morphing began to reverse direction. After identifying a
desired face for their response, participants haltedmorph-
ing by returning their cursor to the center of the screen and
submitted their response by pressing the space bar.
The first 246 trials of this task constituted a training

phase in which the tones were perfectly predictive of the
faces and participants received feedback on their perfor-
mance in the form of points. To encourage precision,
points increased logarithmically as error approached zero,
up to a maximum of 2000. Negative points were awarded
for errors greater than 0.30 units (6 steps in the 41-step
space). Each tone–face pair was presented 6 times. Trial
order was generated randomly for each participant.
Participants then completed two test phases (41 trials each)

during which they no longer received feedback. In the first
test phase, the tones remained perfectly predictive of the
faces. In the second test phase, the mapping between tones
and faces was randomly shuffled for each participant such
that tone conveyed no information about the face. Each
tone and face stimulus was presented once per test phase.
Trial order was randomly generated for each participant.
Analysis of biases in participants’ reports during the

training and first test phase revealed that a large proportion
of the face stimulus space was approximately perceptually
uniform. Across the interval from −0.7 to 0.7, mean

absolute bias was 0.038 and the maximum absolute bias
was 0.096, or less than 1 and 2 steps in the 41-step space,
respectively. Stimuli were therefore restricted to this range
in Experiments 2 and 3.

Experiment 2

The purpose of Experiment 2 was to test whether tone and
face information were integrated behaviorally in a manner
consistent with fusion using a psychophysical task. Sixty
new participants were recruited for this study (37 women,
mean age = 19.5). Participants were exposed to a linear
mapping between tones and faces across 123 trials of a
delayed estimation task identical to the training phase of
Experiment 1 (Figure 1A), with three exposures of each
tone–face pair. Trial order was generated randomly for
each participant.

Figure 1. Learned tone–face associations bias behavioral reports. (A)
Experiment 1 trial structure. On each trial, participants were presented
with a pure tone and an image of a face drawn from a male–female
continuum. At the end of the trial, participants continuously morphed a
face through this space to match the sex of the face they had seen.
Inset: example mappings for five tone–face pairs; in this example, lower
notes were associated with more feminine faces. (B) Mean learning
curve across participants. During an initial training phase (white
region), the tones predicted the faces perfectly and participants
received accuracy feedback. The congruent test phase (purple) was
identical to this training phase, except that participants no longer
received feedback. During the incongruent test phase (blue), the
pairing of tone and face was random. The y-axis reflects error in units of
facial sex: 0.05 units correspond to 1 step in the 41-step space. (C)
Mean signed error (bias) as a function of tone–face mismatch during
the incongruent test phase. Positive x values indicate trials on which the
tones predicted a more feminine face than was actually presented.
Positive y values indicate that participants reported a more feminine
face than was actually presented. Both axes are differences in units of
facial sex. Error bars are the SEM across participants.
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Participants then completed a discrimination task. On
each trial, they were shown two tone–face pairs and asked
to report whether the second face wasmore feminine than
the first (Figure 2A). For the first pair, the tone continued
to predict the sex of the face with 100% validity. The sex of
this first tone–face pair was randomly assigned to 0.25,
0.20, 0.15, −0.15, −0.20, or −0.25 on each trial (“g” in
Figure 2B). For the second pair, however, the sex of the
second tone and/or face was systematically manipulated
in a manner that sometimes corrupted the predictive valid-
ity of the tone (Figure 2B): (1) On ΔFace trials, the second
tone was identical to the first, but the second face differed
in sex from the first by some increment. (2) On ΔTone
trials, the second tone differed in sex from the first by
some increment, but the second face was identical to the
first. (3) On ΔCongruent trials, the second tone and face
differed from the first tone and face by the same sex incre-
ment (the second tone on these trials was valid). (4) On
ΔIncongruent trials, the second tone and face differed
from the first tone and face by equal but opposite sex
increments.

We measured the sensitivity of participants to incre-
ments in sex for each of these four trial types using

separate staircases. Participants were not told about the
existence of the different trial types or staircases. They
began the discrimination task with 41 ΔCongruent trials.
Sex increments on each trial were selected using QUEST,
a Bayesian adaptive algorithm (psychtoolbox.org/docs
/Quest) to converge on the increment at which participants
were correct 75% of the time. The purpose of this initial
staircase was to avoid presenting invalid tones early on,
which, coupled with the change in task phase, may have
led participants to believe that the relationship between
the tones and faces had changed. Results from this
staircase were not analyzed.
After the initial 41 trials, five additional and separate

41-trial staircases began concurrently. Depending on the
trial type, the sex of the second tone and/or face were
determined by increments from a ΔFace staircase, a
ΔTone staircase, a ΔIncongruent staircase, or one of two
ΔCongruent staircases. Two ΔCongruent staircases were
included to help preserve the learned tone–face mapping
by doubling the number of congruent trials. However,
these two staircases were analyzed separately to equate
statistical power across conditions. At the end of staircasing,
the five estimated just noticeable differences (in units of
sex space) were converted to sensitivity scores by taking
their inverse (Ban et al., 2012).
Bymanipulating the predictive validity of the tones in this

way, we were able to implement two tests for fusion. The
first “quad-sum” test relates performance on ΔCongruent
trials to performance on ΔFace and ΔTone trials. For a con-
servative null hypothesis, we still assume that participants
use the tones when making their judgments, but that the
sex conveyed by the faces and tones are encoded indepen-
dently and are corrupted by independent sources of noise.
Under these assumptions, the optimal solution is to recast
the task as a discrimination problem in a space with two
orthogonal cue axes (Figure 3A). The discriminability of
the two tone–face pairs on ΔCongruent trials is the hypote-
nuse (root quadratic sum) of the discriminability when only
the tones or faces differ (Figure 3B). In the case of fusion,
the sensory and expectation dimensions are not indepen-
dent; observers take a weighted average of face and tone
information for each pair to produce a single estimate of
sex (Figure 3C). Specifically, if the sex of the tone t is encoded
with variance σt

2 and the sex of the face f is encoded with
variance σf

2, then the fused sex estimate on a particular trial
will be drawn from a distribution with a mean

μ ¼ wf þ 1−wð Þt
and reduced variance

σ2 ¼ w2σ2
f þ 1−wð Þ2σ2

f

where w indicates the relative weighting of face and tone
information. As a result of averaging, performance is sup-
pressed in the ΔFace and ΔTone conditions because the
difference along one dimension (i.e., face and tone, respec-
tively) is diluted by averaging-in the other dimension that

Figure 2. Discrimination task for testing fusion. (A) Discrimination task
trial structure. On each trial, participants were presented with two
tone–face pairs and reported whether the second face was more
feminine than the first. (B) Discrimination task trial types. g refers to a
point in the male–female space linked to a particular tone and face
stimulus. Δg is calculated separately for each condition and varies over
trials according to a staircasing algorithm that identifies a 75% accuracy
threshold (final Δg = JND). For all trials, the first tone accurately
predicted the first face. On ΔFace trials, the second face differed from
the first. On ΔTone trials, the second tone differed from the first. On
ΔCongruent trials, both the second tone and face differed from the first,
and the second tone predicted the same sex as the second face. On
ΔIncongruent trials, both the second tone and face differed from the
first, but the second tone predicted a different sex than the face.
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does not contain a difference (i.e., tone and face, respec-
tively). Performance in the ΔCongruent condition should
thus exceed the root quadratic sum of these suppressed
levels (Figure 3D). Therefore, we computed the difference
between the sensitivity in the congruent condition and the
root quadratic sum of ΔFace and ΔTone sensitivity for each

participant, and tested if the mean of this distribution was
significantly greater than zero (two-tailed t test):

quadsum statistic ¼ SΔCongruent −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ΔFace þ S2ΔTone

q

where s is sensitivity.

Figure 3. Theoretical predictions and behavioral fusion. (A) If the sex estimates elicited by the tones and faces are independent, the task can be recast as
a linear discrimination problem in a 2-D space. One axis represents sex estimates derived from the tones and the other from the faces. Differences
between the two pairs along either or both dimensions facilitate discrimination. The example depicts a ΔCongruent trial. (B) Predictions for each of the
four trial types described in Figure 2B under independence. Because performance is proportional to the distance between means, performance in the
ΔCongruent condition can be predicted by performance in the ΔFace and ΔTone conditions, according to the Pythagorean theorem (dotted line).
Because cue axes are orthogonal, performance on ΔCongruent and ΔIncongruent trials is equal. (C) Under fusion, observers take a weighted average of
sex estimates from the faces and tones, resulting in a 1-D discrimination problem. (D) As a result, performance in theΔFace andΔTone conditions will be
suppressed because an uninformative cue has been averaged-in (i.e., unchanging tone and face, respectively). Because both cues are informative,
performance in the ΔCongruent condition is unaffected relative to independence and thus exceeds the root quadratic sum (dotted line). ΔCongruent
performance also exceeds the ΔIncongruent condition because the conflicting cues partially cancel each other out. (E) Sensitivity is measured as 1/JND,
where JND reflects the Δg in each condition that produced 75% discrimination accuracy. Error bars are the SEM across participants. (F) Mean of the two
fusion metrics across participants (computed using the first of the two analyzed congruent staircases). Violin plots reflect the bootstrapped sampling
distribution of the mean, in which participants were resampled with replacement to quantify reliability across participants. *p < .05, ***p < .001.
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The second “incongruent” test for fusion compares perfor-
mance on ΔCongruent versus ΔIncongruent trials. An
independence mechanism predicts that performance in
the ΔCongruent and ΔIncongruent conditions should be
equivalent because the distance between tone–face pairs in
this bivariate space is the same (Figure 3B). In contrast,
under fusion, the averaging of conflicting cues in the
ΔIncongruent condition will reduce the differences between
pairs and hamper discrimination relative to the ΔCongruent
condition (Figure 3D). Therefore, we computed the differ-
ence in sensitivity between the ΔCongruent and
ΔIncongruent conditions and tested if the mean of this dis-
tribution was significantly greater than zero (two-tailed t test):

incongruent statistic ¼ SΔCongruent − SΔIncongruent

Experiment 3

The purpose of Experiment 3 was to identify brain regions
supporting neural fusion of tone and face information
using multivariate fMRI. Thirty-two new participants were
recruited for this study (20 women, mean age = 21.8).
The training task was identical to Experiments 1 and 2.
Participants underwent training over the course of 2 days,
completing 369 trials on the day before their scan and an
additional 123 trials immediately before the scan.

In the scanner, participants were exposed to one tone–
face pair per trial while performing an oddball cover task
that demanded attention to the tone and face stimuli
(Figure 4A). Oddball trials occurred ∼18% of the time, con-
taining either two tones or two faces in rapid succession in
place of the typical one tone and one face. Participants were
asked to report the presence of oddballs with a button
press, and these trials were discarded from further analysis.
Participants completed eight fMRI runs of 98 trials each (18
oddball trials, 80 non-oddball). Note that previous work
suggests that cue combination is an automatic, preattentive
processes (Van der Burg, Olivers, Bronkhorst, & Theeuwes,
2008; Vroomen, Bertelson, & de Gelder, 2001a, 2001b) and
that cue weights are unaffected by the focus of attention
(Helbig & Ernst, 2008; Bresciani, Dammeier, & Ernst,
2006). Accordingly, designs similar to ours have shown
fusion despite also deploying cover tasks orthogonal the
features undergoing fusion (Murphy et al., 2013; Ban
et al., 2012). Therefore, it is unlikely that the oddball cover
task interfered with the fusion process.

The logic of Experiment 3 was similar to Experiment 2,
but the discriminability of sex within each condition was
examined differently: Each trial contained one pair so we
could estimate a neural representation of the sex of that
tone–face combination from fMRI, and we calculated the
discriminability of these representations across trials from
the same condition. Specifically, non-oddball trials con-
sisted of eight different trial types (10 trials each), resulting
from the cross of sex (male or female) and condition
(ΔFace, ΔTone, ΔCongruent, ΔIncongruent; Figure 4B).
Across ΔFace trials, the tone was neutral but the face con-
veyed sex; across ΔTone trials, the tone conveyed sex but

the face was neutral; across ΔCongruent trials, both the
tone and face conveyed sex and were consistent within
trial; and across ΔIncongruent trials, both the tone and face
conveyed sex but were inconsistent within trial. Rather
than fixing discriminability as we did in Experiment 2
(i.e., behavioral accuracy at 75%) and measuring the dis-
tance in stimulus space required, here, we fixed the distance
of the tones and faces in stimulus space and measured dis-
crimination accuracy using multivariate pattern classifiers.
Stimuli labeled “male” had a sex value of −0.6 (with ±0.1
units of jitter), stimuli labeled “female” had a sex value
of 0.6 (with ±0.1 units of jitter), and neutral stimuli had a
value of 0 (with ±0.1 units of jitter).
Structural and fMRI data were collected on a 3 T Siemens

Skyra scanner with a 16-channel head coil. Structural data
were acquired using a T1-weighted magnetization pre-
pared rapid acquisition gradient echo sequence (1 mm
isotropic). Functional data consisted of T2*-weighted mul-
tiband EPI sequences with 48 oblique axial slices aligned to
the anterior commissure-posterior commissure line ac-
quired in an interleaved order (1500-msec repetition time,
40-msec echo time, 2-mm isotropic voxels, 96 × 96matrix,
192-mm field of view, 64° flip angle). Data acquisition in
each functional run began with 12 sec of rest to approach
steady-state magnetization. A B0 field map was collected at
the end of the experiment.
The first four volumes of each functional run were dis-

carded for T1 equilibration. Functional data were prepro-
cessed and analyzed using FMRIB Software Library (www
.fmrib.ox.ac.uk/fsl), including correction for head motion
and slice-acquisition time, spatial smoothing (5-mm
FWHM Gaussian kernel), and high-pass temporal filtering
(128-sec period). Data were manually inspected for mo-
tion artifacts, spikes, and low signal-to-noise ratio.
We defined seven ROIs (Figure 4C), covering a broad

swath of face- and tone-sensitive cortical areas, and tested
whether their neural representations were consistent with
fusion. ROIs were defined based on automated meta-
analysis in Neurosynth (neurosynth.org/) using “face” and
“tone” as search terms. ROIs were created by downloading
statistical images from Neurosynth and binarizing the im-
ages such that significant voxels had a value of 1. Clusters
with more than 100 voxels were saved as masks, registered
to each participant’s functional space, and then rebinarized.
Classifier analyses were performed on the parameter es-

timates from a single trial general linearmodel (Aly & Turk-
Browne, 2016; Hindy et al., 2016), which contained 98 task-
related regressors: one for every trial in the run, modeled
as 1.5-sec boxcars covering stimulus exposure. All regres-
sors were convolved with a double-gamma hemodynamic
response function. The six directions of head motion were
also included as nuisance regressors. Autocorrelations in
the time series were corrected with FILM prewhitening.
Each run was modeled separately in first-level analyses.
First-level parameter estimates were registered to the
participant’s T1 image. For univariate analyses, parameter
estimates were normalized to percent signal change by
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scaling with the min/max amplitude of the predicted
effect, dividing by the run mean, and multiplying by 100
(mumford.fmripower.org/perchange_guide.pdf).
Classifier analyses were performed using custom scripts

in MATLAB (The MathWorks, Inc.) on individual runs and
averaged across runs (Aly & Turk-Browne, 2016). For each
participant, ROI, and condition (ΔFace,ΔTone,ΔCongruent,

ΔIncongruent), we trained a regularized logistic regression
classifier (penalty = 1) to distinguish voxel patterns of
parameter estimates from “male” and “female” trials. Clas-
sifier performance was assessed using leave-one-out cross-
validation (train on 19 trials, test on one). The average
classifier accuracy across folds and runs was calculated sep-
arately for male and female test trials and was converted

Figure 4. Neuroimaging design and results. (A) Each fMRI trial contained one tone–face pair. To ensure attention, participants pressed a key on
infrequent “oddball” trials where either the tone or face was replaced by two rapid tones or faces, respectively, and otherwise withheld their
response. Oddball trials were discarded from analysis. (B) There were four cue conditions: only the face indicating sex (ΔFace), only the tone
indicating sex (ΔTone), the face and tone indicating the same sex (ΔCongruent), and the face and tone indicating different sexes (ΔIncongruent).
Within each condition, the sex could either be male or female; ΔIncongruent trials were labeled based on the sex of the face. We assessed the
neural evidence for facial sex in each condition by attempting to discriminate voxel patterns for male and female trials using multivariate pattern
classification. (C) ROIs were generated using automated meta-analyses of published neuroimaging data (Yarkoni, Poldrack, Nichols, Van Essen, &
Wager, 2011). (1) left auditory cortex/STG, (2) right auditory cortex/STG, (3) left occipitotemporal cortex, (4) right occipitotemporal cortex, (5) left
amygdala, (6) right amygdala, and (7) right inferior frontal gyrus. (D) Accuracy of the four classifiers (in units of d0) for each ROI. Dotted line indicates
root quadratic sum of ΔFace and ΔTone d0, as in Figure 3. L/R indicate left/right hemisphere. (E) Mean percent signal change for each condition
and ROI, averaged across trials, voxels, and participants. Error bars are the SEM across participants. Lines and asterisks reflect paired t tests. • p < .10,
*p < .05, **p < .01, ***p < .001.
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tod0 using the formula z(hit)− z(false alarm), where correct
female test trials were coded as hits and incorrect male tri-
als (i.e., labeled as female) were coded as false alarms. We
then computed a neural version of the quad-sum and in-
congruent fusion metrics for each participant and ROI by
substituting classifier d0 for sensitivity:

quadsum statistic ¼ d0
ΔCongruent −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d02

ΔFace þ d02
ΔTone

p

incongruent statistic ¼ d0
ΔCongruent ¼ d0

ΔIncongruent

Finally, this fMRI design allowed us to perform an addi-
tional a priori “transfer” test for fusion (Murphy et al.,
2013; Ban et al., 2012). Under fusion, estimates of sex
from tones and/or faces are encoded in the same represen-
tational space. Therefore, a classifier trained to discrimi-
nate sex on ΔTone trials should be able to decode ΔFace
trials, and a sex classifier trained on ΔFace trials should be
able to decode ΔTone trials (Figure 5C). In contrast, when
tone and face information are independent, a classifier
trained on ΔFace trials should not successfully decode
ΔTone trials, and vice versa. The transfer test statistic
was thus the average d0 of a classifier trained and tested
in this manner. Specifically, within each run, classifiers
were trained to decode male and female trials from the
ΔFace condition and tested on the ΔTone condition, and
vice versa. Generalization performance was averaged
across these two folds and across runs.

The significance of each fusion metric for each ROI was
assessed with random effects bootstrap resampling, by
sampling participants with replacement across 1000 itera-
tions and calculating the proportion of iterations with a
mean in the opposite direction as the true mean. The

intuition behind this approach is that, to the extent that
an effect is reliable in the population, the participants
should be interchangeable and a similar effect will be
obtained regardless of which participants are sampled,
resulting in a sampling distribution with low variance. To
combine across fusion tests and control for multiple com-
parisons across ROIs, we also computed the probability that
any of the seven regions we investigated would display
trending or significant effects for all three fusion tests by
chance. To do this, we repeated the entire classification
and bootstrapping procedure 1000 times, randomly per-
muting condition labels for each participant, and recorded
the number of instances in which at least one ROI displayed
ps < .10 for all three fusion tests. This tested the null
hypothesis that there was no meaningful pattern of classifi-
cation performance across the four trial conditions.
We additionally used searchlight analyses to compute

the three neural fusion metrics across cortex. The proce-
dure was identical to that described above for the ROIs,
except that parameter estimates were registered to 2-mm
Montreal Neurological Institute space and analyses were
repeated for all 27-voxel cubes (3 × 3 × 3) centered on
voxels in cortex according to the Harvard-Oxford structural
atlas (Desikan et al., 2006). Group analyses comparing each
test to zero across participants were performed using
random effects nonparametric tests (as implemented by
the randomise function in FMRIB Software Library),
corrected for multiple comparisons with threshold-free
cluster enhancement.
We modeled the design and analysis of this imaging

study after Experiment 2 because the independencemodel
remains a strong null hypothesis. Indeed, any region that

Figure 5. Classification-based
neural fusion tests. (A) The
mean quad-sum test statistic
(ΔCongruent d0 minus root
sum-squared ΔFace and ΔTone
d0) for each ROI. (B) The
mean incongruent test
statistic (ΔCongruent minus
ΔIncongruent d0) for each ROI.
(C) Rationale for the transfer
test. Under independence,
face and tone information are
coded along orthogonal axis
in state space. A classifier
trained to discriminate male
and female faces will fail to
discriminate the corresponding
tones (and vice versa).
Under fusion, face and tone
information are coded along
a common axis, allowing a
classifier to generalize from
the ΔFace to the ΔTone
condition (and vice versa).
Dots reflect hypothetical trials
in a two-voxel state space; red and orange lines reflect trained classification boundaries. (D) The mean transfer test statistic for each ROI.
Violin plots reflect the bootstrapped distribution of the mean. • p < .10, *p < .05.
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contains a mixture of face- and tone-selective voxels will
display a pattern consistent with independence. The intro-
duction of cue conflicts on ΔFace and ΔTone trials is a
calculated design decision that allows us to test that
superior performance in the ΔCongruent condition is, in
fact, because of fusion, as described above.

RESULTS

Experiment 1

We first established a novel set of expectations via associa-
tive learning in the domain of face perception. In the train-
ing phase, participants became more accurate across trials
(Figure 1B, white region). The mean change in error from
the first 20 trials to last 20 trials was 0.054, a significant
decrease, t(47) = 5.019, p < .001. This decrease in error
could be driven by a variety of factors, including perceptual
learning, refinement of motor responses, and learning of
the tone–face associations.
To specifically test if learned tone–face associationswere

biasing behavior, we analyzed responses from a test phase
in which we manipulated the predictive validity of the
tones. We compared a congruent period in which the
tones predicted the faces deterministically (Figure 1B, pur-
ple region) to an incongruent period in which there was
no longer any relationship between tones and faces
(Figure 1B, blue region). Error was significantly greater
during the incongruent test than during the congruent test,
t(47) = 2.824, p= .007. Errors during the incongruent test
were influenced by the sign and magnitude of the tone–
face mismatch. When the tone predicted a more feminine
face than actually shown, participants tended to report a
more feminine face and vice versa (Figure 1C). The average
within-subject correlation between tone–face mismatch
and mean signed error across trials was r = .110, signifi-
cantly greater than zero, t(47) = 10.204, p < .001.
Together, these results suggest that participants learned

the mapping between tones and faces and that these
associations were sufficient to generate expectations
about facial sex that could bias behavior.

Experiment 2

A new cohort of participants (n = 60) was exposed to a
linear mapping between the tones and faces. We then
tested whether expectations and sensory information were
integrated in a manner consistent with fusion using psy-
chophysical techniques originally developed for studying
cue combination in depth perception (Murphy et al., 2013;
Ban et al., 2012).
Consistent with a fusion mechanism: (1) Sensitivity in

both ΔCongruent conditions exceeded the root quadratic
sum of ΔFace and ΔTone (quad-sum test, t(59) = 2.218,
p= .030; t(59)= 2.053, p= .045), and (2) sensitivity in both
ΔCongruent conditions exceededΔIncongruent (incongruent

test, t(59) = 3.995, p < .001; t(59) = 4.359, p < .001;
Figure 3E–F).

Together, these results provide evidence that expecta-
tions generated by recently learned cues are fused with
sensory estimates.

Experiment 3

We next tested for fusion of tones and faces in neural repre-
sentations of sex. The pattern of classifier accuracy across
conditions was most consistent with fusion in the left
auditory cortex/superior temporal gyrus (STG) ROI, with a
similar but weaker result in right auditory cortex/STG ROI
(Figure 4D). The quad-sum (Figure 5A; p= .087) and incon-
gruent (Figure 5B; p = .079) fusion tests trended toward
significance in the left auditory cortex/STG ROI. The transfer
fusion test (Figure 5D) was significant in left auditory cortex/
STG ( p = .042) and right auditory cortex/STG ( p = .033).

Together, these analyses suggest auditory cortex/STG as
a candidate region in which fusion may occur, particularly
in the left hemisphere. Although the first two fusion tests
were onlymarginally significant in this region (i.e.,p< .10),
the observation of a marginal or significant result for all
three fusion tests in any of the seven ROIs was unlikely
to have occurred by chance ( p= .046, randomization test
correcting for multiple comparisons).

The pattern of classification performance in left auditory
cortex/STGwas unrelated to the overall BOLD activity in each
condition (Figure 4E). Indeed, repeated-measures ANOVA
revealed that percent signal change in this region was not
modulated by condition, F(3, 93) = 0.42, p = .740. Percent
signal change was significantly modulated by condition in the
inferior frontal gyrus, F(3, 93) = 2.92, p = .038, and
approached significance in left, F(3, 93) = 2.41, p = .072,
and right, F(3, 93) = 2.61, p= .056, occipitotemporal cortex.
Post hoc t tests revealed that this was because of lower
percent signal change in the ΔTone condition (Figure 4E).

Classification performance was poor in the two ventral
face ROIs (all classifiers p> .05 vs. chance; Figure 4D), per-
haps because of weak topographic organizations for sex in-
formation. Classification in left and right amygdala was
consistent with independence. In both regions, perfor-
mance in the ΔCongruent and ΔIncongruent conditions
was statistically indistinguishable (Figure 5B), and while
performance in the ΔCongruent was numerically greater
than the ΔFace and ΔTone conditions, it did not exceed
quadratic summation (Figure 5A). Right inferior temporal
gyrus displayed an unexpected pattern in which perfor-
mance in the ΔCongruent and ΔIncongruent conditions
were statistically equivalent and tended to be worse than
in the ΔFace and ΔTone conditions. The comparison of
ΔCongruent versus ΔFace was significant ( p = .018, ran-
domization test, all other p > .10). Such a pattern could
be generated by a region in which separate populations
of voxels encode face and tone information and engage
in mutually inhibitory interactions, although we are hesi-
tant to interpret this one idiosyncratic finding.
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To test for neural fusion outside of our ROIs, we ran an
exploratory searchlight analysis across cortex for the
three fusion tests. No regions passed the quad-sum or
incongruent fusion tests after correcting for multiple
comparisons. However, the transfer test searchlight
revealed two large clusters in bilateral inferior temporal
cortex, as well as smaller clusters in right auditory cortex
(Heschl’s gyrus), and frontal, occipital, and parietal

regions (Figure 6, Table 1). Consistent with ROI analyses,
average searchlight performance within left auditory
cortex/STG exceeded chance ( p = .038, bootstrap), but
did not survive whole-brain correction. These results sug-
gest that, after training, sensory stimuli and learned cues
that evoke expectations about those stimuli can drive
neural representations in a common manner throughout
cortex.

Figure 6. Results of transfer
test searchlight. Thresholded
statistical map of the transfer
test searchlight analysis
(corrected for multiple
comparisons with threshold-
free cluster enhancement).
Patterns of activity surrounding
voxels in the obtained clusters,
many in visual cortex, shared a
common code for sex from
tones and faces. Positions of
assigned values correspond to
searchlight centers. L = left
hemisphere; R = right
hemisphere.

Table 1. Searchlight Results from Transfer Test (Clusters Surviving Correction)

Anatomical Region Hemi
Cluster Size
(Voxels) Min p

Montreal Neurological Institute
Coordinates (x y z)

Lingual gyrus L 1349 0.011 −14 −88 −8

Occipital fusiform gyrus R 1053 0.012 34 −76 −4

Paracingulate gyrus R 134 0.025 10 54 14

Lateral occipital cortex L 87 0.021 −48 −70 24

33 0.029 −34 −64 18

25 0.041 −32 −90 −6

12 0.038 −28 −66 34

Heschl’s gyrus R 70 0.032 54 −18 14

Precentral gyrus L 34 0.040 −62 −4 12

Middle frontal gyrus R 32 0.034 42 30 24

29 0.029 54 18 32

Lateral occipital complex R 28 0.037 54 −58 44

STG R 27 0.040 52 −6 −16

Occipital pole R 22 0.040 20 −90 6

Central opercular cortex L 17 0.030 −42 −12 24

Posterior cingulate gyrus L 14 0.029 −6 −36 12

11 0.041 −10 −50 32

Frontal pole R 12 0.041 30 50 6
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DISCUSSION

This study provides evidence that observers incorporate ex-
pectations into perceptual processing by fusing them with
sensory inputs. Conflicting sensory and expectation cues
led to a specific pattern of behavioral deficits in perceptual
decision making, consistent with fusionmodels of cue inte-
gration in which feature estimates are averaged together.
Pattern classifiers trained to perform an analogous set of
discriminations based on neural activity displayed a trend
toward similar fusion in left auditory regions. These results
provide evidence that fusion is instantiated at the neural
level and suggests a computational mechanism by which
expectations enhance the discriminability of perceptual
representations (Brandman & Peelen, 2017; Hindy et al.,
2016; Kok et al., 2012).
Note that while we did not observe a decrease in mean

bold activity in auditory cortex, as observed in some other
studies in regions that show enhanced discriminability of
congruently cued stimuli (e.g., Kok et al., 2012), these
results are not incompatible with proposals that expecta-
tions sharpen neural representations (de Lange et al.,
2018; Kok et al., 2012). By analogy, highly successful
models of visual attention marry mechanisms that can
sharpen neural representations with inhibitory dynamics
that maintain constant levels of overall neural activity
(Carrasco, 2011).
Previous work in multisensory integration and cue com-

bination has demonstrated that humans can fuse highly
stable cues that are genetically programmed or acquired
over a lifetime of experience (Rohe, Ehlis, & Noppeney,
2019; Gau & Noppeney, 2016; Dekker et al., 2015; Rohe &
Noppeney, 2015; Murphy et al., 2013; Ban et al., 2012;
Nardini, Bedford, & Mareschal, 2010; Alais & Burr, 2004;
Ernst & Banks, 2002). Left auditory cortex including
STG has been shown to be sensitive to the conjunction
of familiar visual and auditory cues (e.g., video and audio
of a person speaking; Hein et al., 2007; Kreifelts, Ethofer,
Grodd, Erb, & Wildgruber, 2007; Miller & D’Esposito,
2005; Callan et al., 2003). Here, we provide suggestive
evidence that the human brain flexibly leverages similar
computational principles to integrate newly predictive
information. This might explain how humans deploy re-
cently learned environmental regularities in the service
of faster and more accurate perceptual judgments (e.g.,
Esterman & Yantis, 2010; Turk-Browne, Scholl, Johnson,
& Chun, 2010). Whether similar learning mechanisms gov-
ern both the rapid emergence of fusion in adults and the
slower development of cue integration in children remains
an open question. One intriguing possibility is that both
the newly predictive cues studied here and existing “sen-
sory” cues are learned from the statistical structure of the
environment, just over different timescales. Although little
work, to our knowledge, has examined the learning of
facial sex categories, the learned feature-trait mappings
proposed to support personality judgments (Over &
Cook, 2018) and concept learning more generally (e.g.,

Roads & Love, 2020) can readily generalize to this domain
and be tested empirically using developmental or cross-
cultural methods. In addition, this framework predicts
that, with overtraining, newly predictive cues will come
to influence behavioral and neural activity in a manner in-
distinguishable from that observed during “sensory” cue
combination. For example, learning might drive increasing
engagement of superior temporal sulcus and other regions
classically associated with cue combination and multisen-
sory integration (Stein & Stanford, 2008). This shift in
mechanism may underlie the fact that such highly refined
predictions are more resistant to updates by contradictory
evidence (Yon, de Lange, & Press, 2019).

The present work has several limitations that should
encourage further investigation. First, we explored fusion
for only one type of feature: the sex of face stimuli. Future
work could examine whether the present findings general-
ize to other features and feature-selective cortical areas.
Second, we did not observe any evidence for fusion in
ventral visual regions. This absence of an effect should be
interpreted with caution because classification perfor-
mance was generally poor in these regions. Alternative
designs that allow for continuous decoding of stimulus
identity (Aitken, Turner, & Kok, 2020; Kok, Mostert, &
de Lange, 2017) may allow for more sensitive detection
and reconstruction of facial sex information. In addition,
cover tasks that require more explicit judgments of face
identity, as in previous work (Contreras et al., 2013; Kaul
et al., 2011), may reveal clearer patterns of discrimination
performance by directing attention specifically to the fea-
ture dimensions of interest. Third, several of the fusion
tests in auditory cortex were trending but not significant.
Summation of opposing processes (Press, Kok, & Yon,
2020a, 2020b; Yon & Press, 2017) may have reduced the
apparent strength of these fusion effects: Neural signa-
tures of an early fusion process may have been counter-
acted by later, surprise-related enhancement of conflicting
cue information. This hypothesis could be explicitly tested
using methods with high temporal resolution like magne-
toencephalography. Fusion effects may have also been
dampened by unlearning of the predictive cues from the
preponderance of incongruent trials during scanning.
Increasing the proportion of congruent trials would address
this issue.

Bayesian inference provides a computational account of
how expectations and sensory information interact in
perception. The mechanism by which this integration is
accomplished is likely to depend upon the type of expecta-
tion. For example, expectations may be embedded in the
structural organization of cortex or actively applied in the
form of input from other brain regions (de Lange et al.,
2018). Recent work suggests that expectations may be gen-
eratedby thehippocampuswhenbasedon recently learned
arbitrary associations (Kok & Turk-Browne, 2018; Hindy
et al., 2016). This raises the possibility that the signatures
of learned fusion in auditory cortex reported here may
require hippocampal input.

Panichello and Turk-Browne 823

D
ow

nloaded from
 http://direct.m

it.edu/jocn/article-pdf/33/5/814/1900856/jocn_a_01684.pdf by guest on 15 April 2021



Acknowledgments

The authors thank Mariam Aly, Nick Hindy, Judy Fan, and Daniel
Takahashi for their helpful discussions.

Reprint requests should be sent toMatthew Panichello, Princeton
Neuroscience Institute, Washington Road, Princeton University,
Princeton, NJ 08544, or via e-mail: mfp2@princeton.edu.

Author Contributions

M. F. P. and N. B. T. -B. designed the experiments. M. F. P.
collected and analyzed the data. M. F. P. and N. B. T.-B.
discussed the results and wrote the article.

Funding Information

This workwas supportedby aNational Defense Science and
Engineering Graduate Fellowship (M. F. P.), US National
Institutes of Health grant R01 EY021755 (N. B. T.-B.), and
the Canadian Institute for Advanced Research (N. B. T.-B.).

Diversity in Citation Practices

A retrospective analysis of the citations in every article
published in this journal from 2010 to 2020 has revealed a
persistent pattern of gender imbalance: Although the pro-
portions of authorship teams (categorized by estimated
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