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Abstract 
  
Persistent, memorandum-specific neuronal spiking activity has long been hypothesized to underlie 

working memory. However, emerging evidence suggests a possible role for ‘activity-silent’ synaptic 

mechanisms. This issue remains controversial because evidence for either view has largely depended 

on datasets that fail to capture single-trial population dynamics or on indirect measures of neuronal 

spiking. We addressed this by examining the dynamics of mnemonic information on single trials 

obtained from large, local populations of prefrontal neurons recorded simultaneously in monkeys 

performing a working memory task.  We show that mnemonic information does not persist in the 

spiking activity of prefrontal neurons, but instead alternates between ‘On’ and ‘Off’ periods during 

memory delays. At the level of single neurons, Off periods are driven by a coordinated loss of 

selectivity for memoranda and a return of firing rates to baseline levels.  Further exploiting the large-

scale recordings, we asked whether the functional connectivity among large neuronal ensembles 

depended on information held in working memory. We show that mnemonic information is available 

in the pattern of ensemble connectivity during the memory delay in both On and Off periods of 

neuronal activity. Intermittent epochs of memoranda-specific spiking therefore coexist with activity-

silent mechanisms to span memory delays. 
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Introduction 

Working memory allows us to retain and manipulate information on short timescales and it is central 

to complex cognitive processing and adaptive behavior (Baddeley, 2000; Ehrlich & Murray, 2022). 

Foundational work in the 1970s revealed that working memory is associated with sustained neuronal 

spiking activity in primate prefrontal cortex (Fuster & Alexander, 1971). Subsequent studies 

demonstrated that the persistent spiking of many neurons is specific to a remembered cue (Funahashi 

et al., 1989; Fuster, 1973; Wimmer et al., 2014). Persistent activity has been observed during both 

spatial and feature-based working memory tasks (Armstrong et al., 2009; S. C. Rao et al., 1997; Wilson 

et al., 1993), as well as within many cortical and subcortical brain structures (Chelazzi et al., 1993; 

Glimcher & Sparks, 1992; Hikosaka et al., 1993; Miyashita & Chang, 1988; Snyder et al., 1997; van 

Kerkoerle et al., 2017). In addition to nonhuman primates, it has also been observed in multiple animal 

models (Inagaki et al., 2017) as well as in humans (Harrison & Tong, 2009; Vogel & Machizawa, 2004).  

Combined, this evidence has established persistent spiking as the dominant model of working memory 

(Wang, 2021). 

         In spite of the predominance of the persistent spiking model of working memory, an 

alternative class of models has received increased attention in recent years. This class of models 

proposes that, rather than persistent activity, working memory is instead supported by ‘activity-silent’, 

synaptic mechanisms (Lundqvist et al., 2011; Mongillo et al., 2008; Stokes, 2015). Specifically, 

information held in working memory is stored by the pattern short-term plastic changes initiated by a 

particular memory cue. Proof-of-principle simulations demonstrate that short-term plasticity (STP) 

can maintain information in the absence of persistent spiking (Lundqvist et al., 2011; Mongillo et al., 

2008). Evidence of such latent memory traces has been reported using a variety of methods (Barbosa 

et al., 2020; Lewis-Peacock et al., 2012; Rose et al., 2016; Sprague et al., 2016; Wolff et al., 2017). For 

example, STP, as inferred from functional connectivity, has been shown to account for inter-trial 
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effects and the maintenance of tasks sets during working memory (Barbosa et al., 2020; Fujisawa et 

al., 2008). However, evidence of cue-specific synaptic effects during canonical working memory delays 

has yet to be reported. 

         Nevertheless, synaptic models of working memory can potentially address key shortcomings 

of the persistent spiking model. For one, persistent activity has been reported to be modest, or even 

absent in some cases (Rose et al., 2016; Shafi et al., 2007; Sprague et al., 2016; Wolff et al., 2017), and 

to vary with task demands (Lewis-Peacock et al., 2012; Watanabe & Funahashi, 2014). Second, and 

more importantly, delay-period activity can be highly variable on single trials (Compte et al., 2003), 

prompting some to question the utility of persistent spiking as a reliable mechanism for memory 

maintenance (Lundqvist, Herman, & Miller, 2018; Mongillo et al., 2008; Stokes, 2015). In addition, 

the high-gamma component of prefrontal local field potentials appears bursty, rather than persistent, 

during memory delays, suggesting that population spiking may be similarly irregular (Lundqvist et al., 

2016; Lundqvist, Herman, Warden, et al., 2018). In principle, a synaptic mechanism could eliminate, 

or at least minimize, disruptions in memory maintenance due to spiking irregularities. However, the 

relative contributions of spiking and synaptic mechanisms to working memory remain largely 

unresolved. 

To address the above questions, we studied the activity of neurons within dorsolateral 

prefrontal cortex in two monkeys (A and H) (Supplementary Materials). Monkeys were trained to 

perform two variants of a spatial working memory task (Fig. 1a). In both variants, the monkey was 

first presented with a brief (50 ms) spatial cue at one of eight possible locations while fixating a central 

spot. Following the cue, the monkey maintained fixation during a memory delay (1400-1600 ms). In 

one task (match-to-sample)(Hasegawa et al., 2004), two targets appeared after the delay and the 

monkey was rewarded for making an eye movement to the target appearing at the previously cued 

location. In the second task (memory-guided saccade)(Funahashi et al., 1989), no targets appeared 
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after the delay and the monkey was rewarded for making an eye movement to the previously cued 

(blank) location. Both monkeys successfully learned the two tasks (Fig 1b). Trials of both task types 

were randomly interleaved and were pooled for subsequent analyses.  

 

Figure 1. Persistent, trial-averaged neuronal responses during spatial working memory. (A) Delayed 
match-to-sample (MTS) and memory-guided saccade (MGS) tasks. On each trial, the animal was presented with 
a cue at one of eight possible locations (inset). After a memory delay period, the animal received fluid reward 
for making an eye movement to the previously cued location. (B) Proportion correct for the MTS and MGS 
tasks. Circles denote individual sessions; lines show mean across sessions. (C) Trial-averaged peristimulus time 
histograms for 3 example prefrontal neurons displaying canonical persistent  activity during the memory delay 
period. Colors denote the different cue locations (inset). 

 
Large-scale recordings from local populations of primate prefrontal neurons 

As expected from previous studies (Funahashi et al., 1989; Fuster, 1973), we observed a substantial 

proportion of prefrontal neurons with cue-specific memory delay activity (mean 49% per session). 

Trial-averaged responses of these neurons suggest that their firing rates are sufficient to encode the 

remembered cue during the memory delay (Fig. 1c). However, trial-averaging can obscure the high 

variability of spiking activity present on single trials (Lundqvist, Herman, & Miller, 2018). Thus, for 

individual neurons, cue information may be unreliable at times during the delay. Nonetheless, it could 
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be that lapses in cue information for some neurons in the population are compensated by the 

continued activity of other neurons encoding the same memorandum.  Alternatively, these lapses 

could be coordinated such that cue information fails to persist throughout the memory delay across 

the entire neuronal population. To distinguish between these possibilities, it is crucial to 

simultaneously measure the activity of large populations of neurons and examine their activity on 

single trials in order to evaluate the contribution of persistent spiking to working memory. 

         In the past several years, high-density, silicon probes, most notably Neuropixels probes (IMEC 

inc.), have revolutionized large-scale electrophysiological recordings in the mouse brain (Jun et al., 

2017; Steinmetz et al., 2021). More recently, these probes were adapted for use in nonhuman primates 

(Trautmann et al., 2023).  We used these newly developed probes to obtain recordings from large, 

dense populations of prefrontal neurons in monkeys performing the spatial working memory tasks 

(Fig. 2A). Our Neuropixels recordings (N=18 sessions) typically yielded 100s of single and multi-units 

in each session (mean = 272 +/-53; N = 4,894 total) (Supplementary Materials). In addition to 

memory delay neurons, these recordings allowed us to capture the spatial distribution of multiple 

functional classes of neurons (Fig. S1). For example, neurons selective to multiple task components 

(e.g., visuomotor neurons) tended to be more closely spaced than neurons selective to only one. 

Most importantly, these recordings allowed us to quantify the information that local 

populations of neurons collectively conveyed about the remembered cue location. To do this, we used 

a leave-one-out, binary classification procedure. For each trial within a session, we trained logistic 

regression models to discriminate the test location from its opposite location across the trial duration 

(Fig. 2B). For these and subsequent analyses, the ‘memory period’ was defined as the period from 500 

to 1400 ms after the cue appearance (Supplementary Materials). Across recording sessions, mean 

classification accuracy was significantly above chance throughout the memory period (all p < 0.001, 

sign-rank)(Fig. 2C). Moreover, for each individual session, mean classification across the memory 
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period exceeded chance performance (all p <0.001, sign rank), with accuracies ranging from  61% to 

89%. Lastly, classification accuracy was similar across cue locations (range: 67% to 77%, all p < 0.001, 

sign-rank)  (Fig 2D). 

 

Figure 2.  High-density neuronal recordings from prefrontal cortex. (A) Top, location of recordings in 
lateral prefrontal cortex (inset). Left: Schematic of the Neuropixels NHP probe, highlighting the contiguous 
block of 384 active channels near the probe tip. Right: spike waveform templates for 480 single- and multi-
units extracted from a single example recording session in Monkey A, shown at their measured location on the 
probe surface. Units plotted in red showed selectivity for cue location during the delay period. (B) Leave-one-
trial-out training procedure. For each trial and time point, a classifier was trained on the remainder of trials to 
discriminate the same cue location as the test trial from the opposite cue location. (C) Mean proportion correct, 
averaged across the memory period (+500 to +1400 ms relative to cue onset) by cue locations. Gray traces 
show individual sessions. (D) Classification accuracy (proportion of trials correct) for cue location, relative to 
cue onset. Gray traces indicate individual sessions. 

 
Stability of cue information in firing rates 

The persistence of cue information in the averaged classification accuracy during the memory period, 

however robust, may nonetheless belie memory dynamics occurring on single trials. In particular, any 

lack of persistence on single trials could be obscured in the trial-averaged accuracy. To investigate this, 

we adapted techniques recently employed to study value coding (Rich & Wallis, 2016) to examine the 
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single-trial dynamics of cue information during working memory. Specifically, we analyzed the 

confidence of the classifier described above, which provides a time-resolved index of the amount of 

cue information in population spiking during each trial (Supplementary Materials). In both monkeys, 

classifier confidence correlated with reaction time on correct trials (Fig. S2). Clearly, if indeed cue 

information persists on single trials, then confidence values should remain stably above chance (0.5) 

throughout the memory period.  

On the contrary, we found that confidence failed to persist through the memory period on 

single trials. Instead, lapses in classifier confidence were evident throughout the memory period and 

across trials within each recording session (Fig. 3A, S3). At the start of each trial, confidence was 

consistently high during the visual response to the cue. However, following the disappearance of the 

cue, confidence often returned to chance multiple times during the memory period. During single 

trials, periods of high confidence were interrupted by sharp transitions to low confidence (Fig. 3B). 

Lapses in confidence were not associated with microsaccades (Fig. S4). Furthermore, these transitions 

between high and low confidence did not appear aligned across trials (Fig. 3A,B, S3).  

Given the apparent fluctuations between high and low confidence, we next sought to 

determine if single-trial confidence was best described by one or two means. Our null hypothesis was 

that fluctuations in confidence reflected random perturbations around a single mean. We formalized 

this by fitting a single beta distribution, which is used to model the behavior of random variables on 

the interval [0, 1], to the histogram of confidence values from each session (Supplementary Materials). 

The alternative, two-mean, model describes confidence using a mixture of two beta distributions, 

reflecting two discrete states. Indeed, we found that the two-state model outperformed the single-state 

model in 15 of 18 recording sessions. This was due to the inability of the single state-model to capture 

the broad distribution of confidence values (Fig. S5). This asymmetry in model performance was 

significant across recording sessions (𝜒2(1) = 8, p = 0.005).   
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Figure 3. Single-trial dynamics of memory signals in population spiking activity. (A) Single-trial classifier 
confidence, relative to cue onset, for all trials from the preferred cue condition for two sessions. (B) Confidence 
(black traces) for four example trials drawn from the two sessions in A. Gray traces show trial-averaged 
confidence values. Left, black scale bars denote a 0.10 increment in confidence; dashed lines denote y = 0.50.  

 
Intermittent rate coding of memoranda is coordinated across the population 

Having identified evidence of two discrete states, we next sought to label them on individual trials. 

We repeated the above classification procedure 50 times, shuffling condition labels on each iteration, 

to obtain a null distribution of confidence values for each trial (Fig. 4A)(Supplementary Materials). 

Across the cue and delay epochs, we labeled contiguous time points in which confidence was 

significantly greater than the null as ‘On’ states, and labeled contiguous nonsignificant time points (p 

> 0.20) as ‘Off’ states. During each trial, we observed a mean of 2.59 +/- 0.04 (median=3) On states, 

and a mean of 3.68 +/- 0.02 (median=4) Off states from the cue period until the end of the memory 

delay (Fig. 4B). Periods in which confidence was significantly below the null (confidently incorrect) 

were rare (mean=0.14 +/- 0.01 per trial). The mean duration of On states was 197.4 +/- 2.4 

(median=160) ms, and the mean duration of Off states was 140.0 +/- 0.6 ms (median=100)(Fig. 4C).  
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Figure 4. Coordinated changes in memory selectivity and firing rates during On and Off states. (A) 
Example trial illustrating the labeling of On and Off states. (B) Histogram of number of On (orange) and Off 
(blue) states per trial and (C) state duration for On and Off states. (D)  Memory tuning functions for held-out 
units during On and Off states. Tuning functions show the mean normalized firing rate during the memory 
period (z-scored across trials) for held-out units, relative to each unit’s preferred cue location. Error bars (small) 
denote SEM. (E) Mean normalized population firing rate (SD above baseline) across all sessions for held-out 
units, relative to cue onset. Averages are plotted for all data points (gray) and also separately for firing rates 
extracted from On and Off states during the memory period. 

Having labeled On and Off states in this way, we next asked how the two states were reflected 

in the activity of individual neurons during the memory period. To do this, we used half of the neurons 

recorded during each session to label states as On and Off and then examined the activity of neurons 

in the remaining (held-out) half of the population from the same sessions. We then repeated this 

process, switching training and test labels, allowing unbiased analysis of all 4,894 units (Supplementary 

materials). Indeed, we found that activity differed dramatically between On and Off states in two ways. 

First, spatial tuning during the  memory period, a hallmark of memory delay activity (Rao et al., 1999, 

2000), depended heavily on state.  During On states, held-out neurons were strongly tuned to the 

location of the remembered cue (Fig. 4D). In contrast, during Off states, spatial tuning was virtually 
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eliminated (Fig. 4D). Accordingly, there was a significant interaction between cue location and state 

(On/Off) on firing rates (2-way repeated measures ANOVA, p < 0.001). Whereas cue location 

explained an average of 9.3% of the variance in firing rate during On states, it explained only 0.8% 

during Off states, a nearly 12-fold decrease. Thus, Off states were associated with a pronounced loss 

of spatial tuning at the level of individual neurons.  

Second, average firing rates during the memory period also depended on state. During On 

states, held-out neurons exhibited firing rates above baseline during the memory period (Fig. 4E)(p = 

0.002, sign-rank). In contrast, during Off states, firing rates were statistically indistinguishable from 

baseline (p = 0.145) and significantly lower than On states (p = 0.003). Thus, Off states were not only 

associated with a loss of spatial selectivity but also a collapse of firing rates to baseline levels. Together, 

these results reveal how transitions between On and Off states, derived from confidence values, reflect 

changes in basic firing-rate properties of individual neurons. Furthermore, these observations reveal 

that transitions between On and Off states during the memory period were coordinated across 

neurons within the local population.  

 

Cue-specific neuronal ensembles during the memory period 

The fact that cue information carried by neuronal firing rates is periodically lost during the memory 

period suggests that persistent activity may not be sufficient to support working memory. Therefore, 

we next looked for evidence in favor of synaptic models. These models propose that, rather than 

persistent activity, working memory is instead represented by cue-specific networks of neurons 

(Lundqvist et al., 2011; Mongillo et al., 2008; Stokes, 2015)(Fig. 5A). That is, cue-specific neuronal 

ensembles should be a signature of working memory. Thus, we next looked for cue-specific cell 

assemblies during the memory period. As in our analyses of firing rate dynamics, we leveraged the 

Neuropixels recordings to measure functional connections among the very large numbers of 
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simultaneously recorded neuronal pairs (mean = 36,730  +/- 10,885 per session). Specifically, we 

examined neuronal cross-correlations to assess their dependence on working memory.  

To do this, we computed the cross-correlogram (CCG) between all neuronal pairs in each 

experimental session and for each cue condition based on activity during the memory period. CCGs 

were computed and thresholded using established methods (Siegle et al., 2021; Trepka et al., 2022)(Fig. 

5b)(Supplementary Materials). We focused on CCGs with non-zero time lags, which are those most 

consistent with synaptic connections (Ostojic et al., 2009). In our recordings, we observed significant 

CCGs of this type in 1.52% (+/- 0.25) of neuronal pairs, which totaled 5,868 significant CCGs across 

all sessions.  Next, we compared the pattern of CCGs across cue conditions. Fig. 5c shows an example 

of a comparison of significant CCGs computed for two cue conditions (0 and 180°) in one recording 

session. In this example, the two conditions exhibited highly dissimilar ensembles of functionally 

connected neurons. To quantify the dissimilarity, we counted the number of condition-unique CCGs, 

yielding the Manhattan distance, which could then be compared to a null distribution derived from 

condition-shuffled data (Fig 5d).  We then repeated this procedure for all possible pairs of conditions 

in each session (Fig. 5e). Across sessions, the mean Manhattan distance was significantly greater than 

that predicted by chance (Fig. 5f). Notably, this effect remained significant when confined to a 

comparison of firing-rate matched conditions (Fig S6b; Supplementary Materials) (p < 0.001, sign-

rank). Thus, the ensemble of functionally connected neurons significantly depended on the 

remembered cue.   

If the observed cue-specific ensembles help span the memory period, then they should be 

evident even when cue information in firing rates is absent. To test this, we repeated the above analysis 

separately for On and Off states. As expected, the Manhattan distance was significantly greater than 

chance during On states (Fig. 5f, p = 0.018, sign-rank). Critically, during Off states, when spatial tuning 

was virtually absent and firing rates transitioned to baseline (Fig.4d,e), the Manhattan distance was 
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also significantly greater than chance  (p < 0.001, sign rank). Both On and Off effects remained 

significant when confined to comparisons of firing-rate matched conditions (Fig S6b; Supplementary 

Materials) (p = 0.014 and 0.001, respectively;  sign-rank). Furthermore, the effect during Off states 

was indistinguishable from that of On states (p=0.287, sign rank). Thus, even in the absence of 

persistent memory period activity, memoranda information was reflected in the cue-specific 

ensembles of functionally connected neurons.  

 

Figure 5. Cue-specific neuronal ensembles during the memory period. (A) Cartoon depicting the synaptic 
model of working memory. In the absence of cue-selective firing rates, information persists in the cue-specific 
patterns of potentiated connections (pink and green lines) among neurons (gray nodes). (B) Examples of 
pairwise CCGs computed during the memory period following two different cues. (C) CCG-derived 
connectivity maps during the memory period for two different cue locations measured in one session. Lines 
are drawn between neuronal pairs exhibiting significant CCGs. (D) Differences (dashed line) between the two 
connectivity maps in C, quantified as the Manhattan distance: the sum of cue-specific connections. Comparison 
of this metric to a null distribution derived from condition-shuffled data (gray-outlined bars), yielding a z-score 
(in this case, z = 2.85). (E) Binary comparisons of connectivity maps across all cue locations.  (F) Mean 
normalized Manhattan distance, using data from all sessions during the entire memory period (gray), only during 
On states (orange), and only during Off states. Violin plots show bootstrap across sessions. 

How might spiking and activity-silent coding work together to support memory? Synaptic 

models of working memory propose that evoked responses to a memory cue potentiate synapses 

between cue-selective neurons via STP (Fig 6a). During the subsequent memory period, this evoked 
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response relaxes to baseline. However, the cue-specific pattern of potentiated synapses remains. 

Consequently, cue-specific elevations in firing rate may nonetheless reemerge due to nonspecific 

fluctuations in extrinsic or intrinsic activity. Thus, across a memory period, multiple transitions 

between spiking and activity-silent modes (On and Off) may occur (Lundqvist et al., 2011; Mongillo 

et al., 2008).  

 

Figure 6. Synaptic model predictions: stability of spike coding and cue-specificity of neuronal 
ensembles. (A) Cartoon depicting the interplay between spiking and ‘silent’ mechanisms during working 
memory from synaptic models of working memory. Following the pre-cue period, the memory cue evokes a 
distinct pattern of activity among a network of neurons (circles) and a distinct pattern of STP, temporarily 
facilitating connectivity (lines) among cue-associated neurons. During the memory period, even in the absence 
of persistent spiking activity (Off states), cue information persists in the distinct pattern of connections. During 
On states, nonspecific drive reignites spiking activity among cue-associated neurons. Paired arrows denote 
stochastic transitions between Off and On states. (B) Mean classifier accuracy plotted over time points on 
which the classifier was trained and tested. The block structure indicates good generalization across time. White 
line: boundary of above-chance classification (corrected for multiple comparisons). (C) Left: probability that a 
pair of neurons both responded preferentially to the same cue during the evoked response (0-400 ms post-cue). 
Right: probability that a pair of neurons both exhibited a significant CCG to a particular cue during the memory 
period. (D) Proportion of pairs that were both jointly selective and connected, divided by the proportion 
expected. Violin plots indicate bootstrap across sessions. 

This account makes two testable predictions. First, it predicts a stable memory code during 

periods of spiking. That is, despite the interruption of Off states, the same pattern of cue-selective 

spiking activity should support memory throughout the delay period. Indeed, similar to previous 

studies (Spaak et al., 2017), we found that the performance of classifiers trained on cue-evoked 

responses successfully generalized across the entire memory delay period (Fig 6B).  Second, there 
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should be a correspondence between spiking responses evoked by the cue and functional connectivity 

observed during the memory period. Thus, two neurons exhibiting evoked responses to a given cue 

should tend to be functionally connected during memory. In our data, 2.0% (+/- 0.4) of neuronal 

pairs responded preferentially to a given cue. Additionally, 1.5 (+/- 0.3)% of neuronal pairs exhibited 

significant CCGs to a given cue (Fig. 6c). If these proportions are independent, their conjunction 

should occur at a rate equal to their product. On the contrary, we found pairs displaying spiking 

responses and significant CCGs to the same cue were observed 2.5 times more than expected (Fig. 

6d)(p = 0.003, sign-rank). Thus, neurons that responded jointly during the evoked response were more 

likely to be functionally connected during the memory period, consistent with synaptic models. 

 

Discussion  

These results elucidate the role of persistent and activity-silent mechanisms in spanning memory 

periods. By measuring the spiking of large, local populations of prefrontal neurons and resolving the 

dynamics of mnemonic information on single trials, we found that this information does not persist 

through the memory period. Instead, cue-specific spiking activity was intermittent, and was 

characterized by stochastically occurring, discrete transitions between robust coding of memoranda 

(On states) and complete lapses in such coding (Off states). Notably, these transitions were 

coordinated across large, local populations of neurons.  Complementary to the spike-rate based 

coding, patterns of functional connectivity also carried information about the remembered cue, even 

during Off states. These patterns in functional connectivity are consistent with synaptic models of 

working memory in which cue-specific patterns of potentiated synapses facilitate the reemergence of 

memory information in spike rates following silent epochs (Lundqvist et al., 2011; Mongillo et al., 

2008; Stokes, 2015). 
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Our observations describe the dynamics of local populations of neurons in the primate 

dorsolateral prefrontal cortex. Future work should explore these dynamics in other structures known 

to exhibit memory-delay activity, e.g., parietal cortex (Snyder et al., 1997), and on broader spatial scales, 

including the possible propagation of on states across the cortical surface (Shi et al., 2022) or 

distributed representations supporting memory (Li et al., 2016; Schmitt et al., 2017). Nevertheless, two 

facts suggest that the regions targeted by the present study play a key role in working memory. First, 

focal inactivation of dorsolateral prefrontal cortex has long been known to impair performance in 

spatial working memory tasks (Chafee & Goldman-Rakic, 2000; Dias & Segraves, 1999; Sommer & 

Tehovnik, 1997), including selective inactivation of memory-delay activity (Acker et al., 2016). Second, 

in the context of our study, single trial confidence at the onset of the behavioral response phase 

predicted behavior.   

         Similar, large-scale electrophysiological approaches should be used to assess the relative roles 

of spiking and synaptic mechanisms across a range of working memory tasks. For example, such roles 

may be rather different for spatial and object-based working memory, given the apparent differences 

between the two in the robustness of memory-delay spiking activity across brain areas (Christophel et 

al., 2017). Furthermore, theoretical work suggests that the relative contribution of these two 

mechanisms may be related to the amount of manipulation of remembered information demanded by 

a task (Masse et al., 2019). The spatial tasks employed here demand a relatively straightforward 

sensory-to-motor transformation, and so could rely more on synaptic mechanisms. Empirically 

verifying how task demands sculpt memory representations will lead to a richer understanding of the 

mechanistic basis of working memory. 

         Finally, it is interesting to note that even within a single experimental session and task 

condition, the relative proportion of On and Off states showed a fair degree of heterogeneity across 

trials. Recent electrophysiological studies provide evidence of coordinated fluctuations in local 
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neuronal activity in alert animals (Harris & Thiele, 2011). Furthermore, these coordinated fluctuations 

appear related to moment-to-moment changes in global arousal states and also predict psychophysical 

performance in nonhuman primates (Davis et al., 2020; Engel et al., 2016). Among the many possible 

mechanisms that underlie coordinated fluctuations in neuronal activity include neuromodulatory 

inputs (Noudoost & Moore, 2011). Dynamics in the local tone of neuromodulators may be sufficient 

to induce transitions in local cortical states (Harris & Thiele, 2011). Within dorsolateral prefrontal 

cortex, dopaminergic tone is known to play a key role in the maintenance of memory-delay activity 

(Sawaguchi & Goldman-Rakic, 1991; Vijayraghavan et al., 2007). Thus, examining the contribution of 

dopaminergic tone to the variability in the dynamics of memoranda coding could prove illuminating. 
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Supplementary Materials 

Supplementary Methods 

Subjects 
Two adult male rhesus monkeys (Macaca mulatta) participated in the experiment. Monkey A and H weighted 11 
and 14 kg, respectively. All surgical and experimental procedures were approved by the Stanford University 
Institutional Animal Care and Use Committee and were in accordance with the policies and procedures of the 
National Institutes of Health.  
 
Behavioral task  
Stimuli were presented on a VIEWPixx3D monitor positioned at a viewing distance of 60 cm using 
Psychtoolbox and MATLAB (MathWorks). Eye position was monitored at 1kHz using an Eyelink 1000 eye-
tracking system (SR Research). On each trial, the animals were presented with a cue at one of 8 possible 
locations and reported this location after a brief memory delay to receive fluid reward. Cues were square frames 
(green for Monkey A, black for Monkey H) measuring 1 degree of visual angle on a side and presented at 5-7 
degrees of eccentricity (depending on the session). 
 
Monkeys initiated behavioral trials by fixating a central fixation spot presented on a uniform gray background. 
After the monkeys maintained fixation for 600-800 ms (randomly selected on each trial), a cue appeared for 50 
ms at one of 8 possible locations separated by 45 degrees around fixation. Cue presentation was followed by a 
delay period that varied randomly from 1400-1600 ms. After the delay period, the fixation spot disappeared, 
and the animal was presented with one of two possible response screens. On match-to-sample (MTS) trials, 
two targets appeared (filled blue circles, radius 1 DVA), one at the previously cued location, and the other at 
one of the 7 remaining non-cued locations. On memory-guided saccade (MGS) trials, no targets appeared. In 
either case, the animals received a juice reward for making an eye movement to within 5 degrees of visual angle 
(DVA) of the previously cued location and then maintaining fixation for 200 ms. MTS and MGS trials were 
randomly interleaved such that the animals could not predict the trial type. The animals had to maintain their 
gaze within 3 DVA (monkey A) or 2 DVA (monkey B) from fixation throughout the trial until the response 
stage. The intertrial interval was 300-600 ms after each correct response. Failures to acquire fixation, fixation 
breaks, and incorrect responses were not rewarded and were followed by a 2,000 ms intertrial interval.  
 
Surgical Procedures and Recordings 
Monkeys were implanted with a titanium headpost to immobilize the head and with a titanium chamber to 
provide access to the brain (see Armstrong et al., 2009 for full details). In a previous study (Jonikaitis et al., 
2023), we identified the FEF based on its neurophysiological characteristics and the ability to evoke saccades 
with electrical stimulation. Here, we recorded from FEF and anterior sites (Broadmann areas 9/46) using 
primate neuropixels probes (Trautmann et al., 2023). We pierced the dura using a screw-driven 21 gauge pointed 
cannula and lowered the probe through this cannula using a combination of custom 3D printed grids and 
motorized drives (NAN instruments). Recordings were allowed to settle for ~30 minutes prior to the start of 
the experiment to mitigate drift. We configured probes to recorded from 384 active channels in a contiguous 
block, allowing dense sampling of neuronal activity along a 3.84 mm span. 
 
Neuronal waveforms identified using automated spike-sorting routines (Kilosort3, Pachitariu et al., 2023). 
Neuropixels filter and digitize activity at the headstage separately for the action potential (300 Hz high-pass 
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filter, 30 kHz sampling frequency) and local field potential (1 kHz low-pass filter, 2.5 kHz sampling frequency) 
bands. Activity was monitored during experimental sessions and saved to disk using SpikeGLX 
(https://billkarsh.github.io/SpikeGLX/). 
 
Data Preprocessing 
Spiking in the action-potential band activity was identified and sorted offline using Kilosort3 (Pachitariu et al., 
2023). As we were interested in population-level coding of memory, we analyzed both putative single- and 
multi-unit clusters identified by Kilosort. Spike times were aligned to a digital trigger on each trial indicating 
cue onset and corrected for a lag in stimulus presentation estimated offline using photodiode measurements 
from the stimulus display and the timing of the cue-evoked response. Neurons that fired fewer than 1000 spikes 
in the ~3 hour experimental sessions were excluded from further analyses. Spikes times were converted into 
smoothed firing rates (sampling interval, 10 ms) by representing each spiking event as a delta function and 
convolving this time series with a 100-ms boxcar. For cross-correlogram analyses, unsmoothed spikes times 
were binned with a width and timestep of 1 ms. Incorrect trials were rare (Fig. 1b) and were excluded from 
subsequent analysis.  
 
Functional subtyping 
To determine the functional subtype of units (Bruce & Goldberg, 1985)(Fig. S1), we analyzed firing rates during 
three time epochs: visual (0 to 400 ms post-cue onset), memory (500-1400 ms post-cue onset) and motor (100-
300 ms post-fixation offset). A unit was labeled as being selective during a given epoch if firing rates during 
that epoch were significantly modulated by cue location (1-way ANOVA, p < 0.05 criterion). Units were then 
sorted into functional subclasses based on the set epochs during which each unit was selective.   
 
Classification of cue location 
Firing rate estimates for each unit and timepoint relative to cue onset were z-scored across trials prior to the 
classification. We used linear classifiers to quantify the amount of information about the location of the cue in 
populations of simultaneously recorded units. We held out each trial for test one by one, training a logistic 
regression classifier (as implemented by fitclinear.m in MATLAB) to predict the cue location using the 
population vector of firing rates. Specifically, classifiers were trained to discriminate the same cue location as 
the test trial from the opposite cue location using the applicable subset of trials from the training set. Data were 
subsampled during training to equalize trial counts for the two conditions. A unique classifier was trained and 
tested for each timepoint relative to cue onset. ‘Classification accuracy’ reflects the proportion of correctly 
classified test trials (Fig. 2c). ‘Classifier confidence’ is the non-thresholded value of the logistic function 
corresponding to the probability assigned by the classifier to the correct label at test (Fig. 3).  
 
Cross-temporal classification (Fig. 6b) was similar, except that we employed a split-half approach where the 
classifiers for each timepoint were trained on half of the available population of trials and tested (cross-
temporally) using the other half.   
 
Mixture modeling of confidence 
We used a mixture modeling approach to test whether confidence during the memory period (500 to 1400 ms 
post-cue) was best described as drawn from a 1- or a 2-state distribution (Fig. S5). To do this, for each session 
and cue location, we modeled the PDF of confidence values during the memory period as either a single beta 
distribution: 
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𝑝(𝑐) = 	Beta(𝑐; 𝛼, 𝛽) 
 

or as a mixture of two beta distributions: 
 

𝑝(𝑐) = 	𝑤 ∙ Beta(𝑐; 𝛼, 𝛽) + (1 − 𝑤) ∙ Beta(𝑐; 𝛼′, 𝛽′) 
 

where c is confidence, 𝛼, 𝛽, 	𝛼!, and	𝛽′ parameterize the beta distribution(s), and w is the mixing coefficient. 
The best fitting parameters of each model were identified by maximum likelihood estimation using gradient 
descent in MATLAB. We used 4-fold cross validation on the population of trials to assess the likelihood of 
each model on held-out test data, and then normalized by the number of trials and changed the log likelihood 
to base 2 to yield the cross-validated score of each model in terms of bits per trial. Finally, we subtracted these 
two model scores and averaged across conditions to yield the difference in model performance for each session.    
 
Similar results for our one-vs-two state model comparison were obtained when using gaussian mixture or 
hidden Markov models. We settled on a beta mixture model approach because the beta distribution was most 
appropriate for data distributed on the interval [0, 1] and because state transitions were non-Markov (e.g., due 
to increased likelihood of On states at the end of the delay).  
 
Analysis of microsaccades 
The horizontal and vertical eye position records were convolved with a Gaussian kernel (s = 4.75 ms) to 
suppress noise before taking first derivatives, yielding the eye velocity along each dimension. We then took the 
root sum of squares of the horizontal and vertical velocities to obtain eye speed. We flagged peaks in this 
timeseries with a minimum peak height of 10 deg/second and a minimum interpeak distance of 50 ms as 
microsaccades (Bair & O’Keefe, 1998, Fig. S4), which were confirmed via visual inspection of the data. 
 
Labeling of on and off states 
To identify On and Off states (Fig. 4a), we repeated the cue classification analysis described above 50 times, 
randomly shuffling the labels of the training set for each test trial. This yielded, for each trial, a null distribution 
of 50 confidence timeseries (Fig 4a). We then z-scored each timepoint of the true confidence time series by the 
mean and standard deviation of this null distribution. Individually significant (>1.96) z-values were cluster-
corrected for multiple comparisons over time (Maris & Oostenveld, 2007). In brief, we compared the sum of 
contiguous individually significant z-values with that expected by chance (randomization test). Clusters with a 
mass greater than the 95% percentile of the null were labeled ‘On’ states. Contiguous z-values falling below a 
conservative (p > 0.20) threshold for at least 5 consecutive timepoints were labeled ‘Off’ states.  
 
Tuning curves 
To test if On and Off states reflected coordinated changes in tuning across the neural population, we used a 
split-half approach. First, firing rate estimates for each unit and timepoint relative to cue onset were z-scored 
across trials. Then, for each session, we randomly divided the population of units in half. We used one half of 
the units to identify On and Off states, as described above. Next, for each unit in the held-out population, we 
computed the mean firing rate during the memory period for each cue location separately for On and Off 
states, averaging across relevant timepoints and across trials. This yielded, for each unit, two 8-element vectors 
– the On and Off tuning functions. To align tuning functions across units, the preferred cue location for each 
was identified as condition in which the sum of the On and Off functions was greatest and assigned an arbitrary 
value of zero degrees. Aligning tuning curves to the maximum-valued ‘preferred’ cue in this way will necessarily 
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produce a peak at zero degrees in the average tuning function, even in the absence of true tuning. To correct 
for this, for each unit we also computed null On and Off tuning functions by first shuffling cue labels across 
trials, aligned these to the ‘preferred’ cue, and subtracted these from the true On and Off tuning functions (Fig 
3d).  
 
For display purposes, we fit the average On and Off tuning functions with a difference of gaussians using 
gradient descent in MATLAB. Difference-of-gaussians are useful for describing tuning curves that display 
surround suppression (Sceniak et al., 2001).  
 
Population firing rates 
To described how population firing rates evolved over the course of the trial, we averaged firing rates across 
all units recorded in the same session and across all trials for the preferred cue location (greatest mean 
classification confidence during the memory period), yielding a single time series for each session. We then 
normalized this time series by the mean and standard deviation of a 400 ms baseline period (-400 to 0 ms 
relative to cue onset), yielding a metric of population spiking in units of standard deviations above baseline (Fig 
4e, gray traces). We repeated this analysis for the memory period, this time only including datapoints labeled 
On or Off (Fig 4e, orange and blue traces).  
 
Cross-correlogram analysis 
To characterize functional connectivity among units, we computed the crosscorrelation between spike trains of 
all pairs of simultaneously recorded neurons with mean firing rates greater than 1 1 Hz. CCGs were computed 
separately for each cue location. Following previous studies (e.g. Trepka et al., 2022), to mitigate the firing rate 
effects, we normalized the crosscorrelation for each pair of neurons by the geometric mean of their firing rates. 
The cross-correlogram (CCG) for a pair of neurons (j, k) in condition c was therefore: 
 

𝐶𝐶𝐺(𝜏)",$,% =	
∑ ∑ 𝑥"&(𝑡 − 𝜏) × 𝑥$&'

()*+, (𝑡)-
&),

>∑ ∑ 𝑥"&(𝑡 − 𝜏) × ∑ ∑ 𝑥'
()*+,

-
&), $

& (𝑡)'
()*+,

-
&),

 

 
where M is the number of trials collected for cue location c, N is the number of time bins within a trial, 𝜏 is the 
time lag between the two spike trains, and 𝑥$& (𝑡) is one if neuron j fired in time bin t of trial i and zero otherwise.   
 
To correct for correlation due to stimulus locking or slow fluctuations in population response, we subtracted a 
jittered cross-correlogram from the original cross-correlogram. This jittered cross-correlogram reflects the 
expected value of the cross-correlogram computed from all possible jitters of each spike train within a given 
jitter window (Harrison & Geman, 2009; Smith & Kohn, 2008). The jittered spike train preserves both the 
PSTH of the original spike train across trials and the spike count in the jitter window within each trial. As a 
result, jitter correction removes the correlation between PSTHs (stimulus-locking) and correlations on 
timescales longer than the jitter window (slow population correlations). We chose a 25-ms jitter window, 
following previous work (Jia et al., 2013; Siegle et al., 2021; Trepka et al., 2022; Zandvakili & Kohn, 2015).  
 
We classified a CCG as significant if the peak of the jitter-corrected CCG occurred within 10 ms of zero and 
was more than seven standard deviations above the mean of a high-lag baseline period (100 > |𝜏| > 50, Siegle 
et al., 2021).  Zero-lag CCGs were excluded from the analyses reported here, although including them yielded 
statistically indistinguishable results.  
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All CCGs were estimated using spike trains during the memory period (500 to 1400 ms post-cue) to avoid the 
influence of visually-evoked responses. CCG analyses specific to On and Off states (Fig 5f) were computed by 
first setting x(t) to zero for all timepoints not identified as ‘On’ or ‘Off’ (respectively), and then repeating the 
analysis described above.   
 
Manhattan distance 
To determine if patterns of functional connectivity differed according to the contents of memory, we compared 
the graphs of significant CCGs across cue locations in a pairwise manner (Fig. 5c-f). For each session and cue 
location, we represented the results of our CCG analyses as a graph in which nodes were units. The edge 
(connection) between each pair of units was assigned a weight of one if the pair had a significant CCG and zero 
otherwise. Then, for each possible pair of cue locations, we computed the Manhattan distance, the number 
edges with a weight that differed across the two graphs. Finally, we averaged this metric across all 28 possible 
pairs of conditions, yielding one summary statistic per session.  
 
To normalize this mean Manhattan distance for comparison across sessions, we shuffled the cue location labels 
across trials and repeated the entire analysis pipeline 50 times (25 for analyses specific to On and Off states), 
from CCG estimation through Manhattan distance calculation. We then z-scored the mean Manhattan distance 
for each session by this null distribution and compared these z-scores to zero (Fig. 5f).  
 
Note that CCGs among both single- and multi-units have been widely used as a measure of functional 
connectivity (e.g., deCharms & Merzenich, 1996; Eckhorn et al., 1988; Engel et al., 1990; Gray et al., 1992; Gray 
& Singer, 1989; Luczak et al., 2015; Tanaka et al., 2014). Indeed, CCGs based on multi-unit activity may be 
more sensitive at detecting correlations in spiking than similar analyses of single-neuron pairs (Bedenbaugh & 
Gerstein, 1997; deCharms & Merzenich, 1996; Roy & Alloway, 1999). Nonetheless, the presence of multi-units 
in our dataset does limit the conclusions that might be drawn about the specific neuronal subtypes involved in 
the cue-dependent ensembles that we observe, e.g. putative pyramidal vs non-pyramidal neurons. 
 
Firing rate matched control  
The geometric mean firing rate (gFR) of pairs of units varied significantly across the eight cue locations (1-way 
ANOVA, p = 0.013)(Fig. 6a). gFRs were statistically indistinguishable, however, across cue locations 1-5 (p = 
0.146) and 6-8 (p = 0.593). Therefore, we repeated the analysis of Manhattan distance described above, this 
time only computing the Manhattan distance among cue locations 1-5 and among 6-8 (Fig. S6b) to yield a firing-
rate matched variant of the analysis presented in Fig. 5f.    
 
Joint Selectivity 
To determine the selectivity of units during the evoked response, we averaged each unit’s cue-locked firing rate 
over time (from 0 to 400 ms post-cue onset), yielding an nTrials x 1 vector of firing rates. We then performed 
a one-way ANOVA to evaluate the relationship between cue location and firing rate. If the effect of cue location 
was significant (p < 0.05), the unit was deemed ‘selective’ to cue location and the location to which it had the 
greatest mean firing rate was labelled the preferred location. Pairs of units were deemed jointly selective if they 
were selective for the same cue location.  
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Supplementary Figures 

 

 
Fig S1. Normalized distance between different functional classes of neurons within lateral prefrontal 
cortex. Seven functional classes of neurons were defined according to selective activity to three task 
components: visual, delay, and motor. Neurons were defined as having a given functional property 
based on the presence of significant selectivity across cue conditions within the visual, delay and motor 
epochs of the task. The plot shows the mean distance between different classes of neurons; means 
were calculated and normalized by each session’s total mean distance. Top-left to bottom-right 
diagonal elements show the mean distance within each functional class.  
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Figure S2. Regression coefficient relating classifier confidence to reaction time in milliseconds 
(average across N=10 and N = 8 sessions). Cue location and task (MTS/MGS) were included as co-
regressors. Shaded area: 95% confidence intervals. 
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Figure S3. Single-trial classifier confidence, relative to cue onset, for all trials from the most 
preferred cue condition for each session. Color scale as in Figure 2a.  
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Figure S4. Classifier confidence was not affected by microsaccades. Left: Example trial showing eye 
speed data and microsaccade identification. Microsaccades were identified as peaks in eye speed >10 
DVA/s. Right: Mean classifier confidence during the memory period, locked to microsaccades 
(average across N = 8,910 microsaccades). Shaded area (small) indicates 95% confidence intervals. 
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Figure S5. Confidence values during the memory period are better described as draws from  a 2-state 
rather than from a 1-state model. Left: Histogram of confidence values during memory delay time 
points for the preferred cue condition from one example session. Dashed line shows the best fitting 
beta distribution. Solid line shows the best fitting mixture of two beta distributions. Right: Cross-
validated model comparison results for 2-state vs 1-state fits for all sessions (N=18). Circles show 
individual session scores; black line shows mean across sessions; dashed line indicates equivalent 
model performance. 
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Figure S6. Firing rate matching for CCG analysis. (A) Top:  Normalized geometric mean firing rate 
(gFR) of all pairs of neurons during the memory period. Bottom: Normalized number of neuronal 
pairs with significant CCGs. Gray lines show individual sessions; bars show mean across sessions; 
colors indicate cue location (lower inset). (B) Mean normalized Manhattan distances restricted to a 
comparison among cue conditions (1-5 and 6-8) in which gFR was equal (see Methods). Shown are 
means of data from all sessions during the entire memory period (gray), only during On states (orange), 
and only during Off states. Violin plots show bootstrap across sessions.   
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