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Intermittent rate coding and cue-specific 
ensembles support working memory

Matthew F. Panichello1,2 ✉, Donatas Jonikaitis1,2, Yu Jin Oh1, Shude Zhu1, Ethan B. Trepka1 & 
Tirin Moore1 ✉

Persistent, memorandum-specific neuronal spiking activity has long been 
hypothesized to underlie working memory1,2. However, emerging evidence suggests  
a potential role for ‘activity-silent’ synaptic mechanisms3–5. This issue remains 
controversial because evidence for either view has largely relied either on datasets 
that fail to capture single-trial population dynamics or on indirect measures of 
neuronal spiking. We addressed this controversy by examining the dynamics of 
mnemonic information on single trials obtained from large, local populations of 
lateral prefrontal neurons recorded simultaneously in monkeys performing a working 
memory task. Here we show that mnemonic information does not persist in the 
spiking activity of neuronal populations during memory delays, but instead alternates 
between coordinated ‘On’ and ‘Off’ states. At the level of single neurons, Off states  
are driven by both a loss of selectivity for memoranda and a return of firing rates to 
spontaneous levels. Further exploiting the large-scale recordings used here, we show 
that mnemonic information is available in the patterns of functional connections 
among neuronal ensembles during Off states. Our results suggest that intermittent 
periods of memorandum-specific spiking coexist with synaptic mechanisms to 
support working memory.

Working memory allows us to retain and manipulate information on 
short timescales, and it is central to complex cognitive processing and 
adaptive behaviour6,7. Foundational work in the 1970s showed that 
working memory is associated with sustained neuronal spiking activity 
in primate prefrontal cortex8. Subsequent studies demonstrated that 
the persistent spiking of many neurons is specific to a remembered 
cue9–11. Persistent activity has been observed during both spatial and 
feature-based working memory tasks12–14, as well as within many cor-
tical and subcortical brain structures15–20. In addition to non-human 
primates, it has also been observed in multiple animal models21 as well 
as in humans22,23. Combined, this evidence has established persistent 
spiking as the dominant model of working memory2.

In spite of the predominance of the persistent-spiking model of work-
ing memory, an alternative class of models has received increased 
attention in recent years. This class of models proposes that working 
memory is supported by ‘activity-silent’, synaptic mechanisms rather 
than persistent activity4,5,24. Specifically, information held in work-
ing memory is stored by the pattern of short-term plastic changes 
initiated by a particular memory cue. Proof-of-principle simulations 
demonstrate that short-term plasticity (STP) can maintain informa-
tion in the absence of persistent spiking4,24. Evidence of such latent 
traces has been reported using a variety of methods25–29. For exam-
ple, STP, as inferred from functional connectivity, has been shown to 
correlate with cross-trial serial biases25 and the maintenance of tasks 
sets30 during working memory. However, it remains unknown whether 
cue-specific synaptic mechanisms operate during canonical working 

memory delays, when the maintenance of memorandum information 
is most critical.

Nevertheless, synaptic models of working memory can potentially 
address key shortcomings of the persistent-spiking model. For one, 
persistent activity has been reported to be modest, or even absent, in 
some cases27–29,31, and to vary with task demands26,32. Second, and more 
importantly, delay-period activity can be highly variable on single 
trials33, prompting some to question the utility of persistent spiking 
as a reliable mechanism for memory maintenance3–5. In addition, the 
high-gamma component of prefrontal local field potentials appears 
bursty, rather than persistent, during memory delays, suggesting that 
population spiking may be similarly irregular34,35. In principle, a syn-
aptic mechanism could eliminate, or at least minimize, disruptions 
in memory maintenance due to spiking irregularities. However, the 
relative contributions of spiking and synaptic mechanisms to working 
memory remain largely unresolved.

To address the above questions, we studied the activity of neurons 
within the lateral prefrontal cortex (areas 8 and 9/46) in three monkeys 
(A, H and J; Methods). The monkeys were trained to perform one or two 
variants of a spatial working memory task (Fig. 1a). In both variants, 
the monkey was first presented with a brief (50 ms) spatial cue at one 
of eight possible locations while fixating a central spot. Following the 
cue, the monkey maintained fixation during a memory delay (1,400–
1,600 ms). In one task (match-to-sample, MTS)36, two targets appeared 
after the delay and the monkey was rewarded for making an eye move-
ment to the target appearing at the previously cued location. In the 
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second task (memory-guided saccade, MGS)9, no targets appeared after 
the delay and the monkey was rewarded for making an eye movement 
to the previously cued (blank) location. All three monkeys achieved 
excellent performance (Fig. 1b). Trials of both task type were randomly 
interleaved and were pooled for subsequent analyses.

High-density recordings from prefrontal cortex
As expected from previous studies9,10, we observed a substantial pro-
portion of prefrontal neurons with cue-specific memory delay activity 
(mean, 44% per session). Trial-averaged responses of these neurons 
suggest that their firing rates are sufficient to encode the remembered 
cue during the memory delay (Fig. 1c). However, trial averaging can 
obscure the high variability of spiking activity on single trials3. Thus, for 
individual neurons, cue information may be unreliable at times during 
the delay. Nonetheless, it could be that lapses in cue information for 
some neurons in the population are compensated by the continued 
activity of other neurons encoding the same memorandum. Alterna-
tively, these lapses could be coordinated such that cue information 
fails to persist throughout the memory delay across the entire neuronal 
population. To distinguish between these possibilities, it is crucial to 
simultaneously measure the activity of large populations of neurons 
and to examine their activity on single trials, to evaluate the contribu-
tion of persistent spiking to working memory.

In the past few years, high-density, silicon probes, most notably 
Neuropixels probes (IMEC, Inc.), have revolutionized large-scale elec-
trophysiological recordings in the mouse brain37,38. More recently, 
these probes were adapted for use in non-human primates39. We used 
these probes to obtain recordings from large, dense populations of 
prefrontal neurons in monkeys performing the spatial working memory 

tasks (Fig. 2a). Our Neuropixels recordings (n = 25 sessions) typically 
yielded hundreds of single and multi-units in each session (mean, 
329 ± 46; n = 8,225 total; Methods). In addition to memory delay neu-
rons, these recordings allowed us to capture the spatial distribution 
of multiple functional classes of neurons (Extended Data Fig. 1). For 
example, neurons selective to multiple task components (for example, 
visuomotor neurons) tended to be more closely spaced than those 
selective to only one.

Most importantly, these recordings allowed us to quantify the infor-
mation collectively conveyed by local populations of neurons about 
the remembered cue location. To do this, we used a leave-one-out, 
binary classification procedure. For each trial and time point within a 
session, we trained logistic regression models to discriminate the test 
location from its opposite location across the trial duration (Fig. 2b). 
For these and subsequent results, analyses of the memory delay were 
confined to the period from 500 to 1,400 ms following cue appearance, 
to avoid the influence of visually evoked responses (Methods). Across 
recording sessions, mean classification accuracy was significantly 
above chance throughout the memory delay (all P < 0.001, sign-rank) 
(Fig. 2c). Moreover, for each individual session, mean classification 
across the memory delay exceeded chance performance (all P < 0.001, 
sign-rank), with accuracies ranging from 59 to 89%. Last, classification 
accuracy was similar across cue locations (range, 67–74%, all P < 0.001, 
sign-rank) (Fig. 2d).

Stability of cue information in firing rates
The persistence of cue information in the averaged classification accu-
racy during the memory delay, however robust, may nonetheless belie 
memory dynamics occurring on single trials. In particular, any lack of 
persistence on single trials could be obscured in the trial-averaged 
accuracy. To investigate this, we adapted techniques recently used 
to study value coding40 to examine the single-trial dynamics of cue 
information during working memory. Specifically, we analysed the 
confidence of the classifier described above—the posterior probability 
assigned to the correct class at test, which provides a time-resolved 
index of the amount of cue information in population spiking during 
each trial (Methods). In each monkey, classifier confidence correlated 
with reaction time on correct trials (Extended Data Fig. 2a). Clearly, 
if cue information persists on single trials, confidence values should 
remain stably above chance (0.5) throughout the memory delay.

On the contrary, we found that confidence failed to persist through 
the memory delay on single trials. Instead, lapses in classifier confi-
dence were evident throughout the memory delay and across trials 
within each recording session (Fig. 3a, Extended Data Fig. 3). At the 
start of each trial, confidence was consistently high during the visual 
response to the cue. However, following the disappearance of the 
cue, confidence often returned to chance multiple times during the 
memory delay. During single trials, periods of high confidence were 
interrupted by sharp transitions to low confidence (Fig. 3b). Lapses 
in confidence were not associated with microsaccades (Extended 
Data Fig. 4). Furthermore, these transitions between high and low 
confidence did not appear aligned across trials (Fig. 3a,b, Extended 
Data Fig. 3).

Given the apparent fluctuations between high and low confidence, 
we next sought to determine whether single-trial confidence was best 
described by one or two means. Our null hypothesis was that fluctua-
tions in confidence reflect random perturbations around a single mean. 
We formalized this by fitting a single beta distribution, which is used 
to model the behaviour of random variables on the interval [0, 1], to 
the histogram of confidence values from each session (Methods). The 
alternative, two-mean model describes confidence using a mixture of 
two beta distributions, reflecting two discrete states. Indeed, we found 
that the cross-validated, two-state model outperformed the single- 
state model in 19 of 25 recording sessions; this was due to the inability 
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of the single-state model to capture the broad distribution of con-
fidence values (Extended Data Fig. 5). This asymmetry in model 
performance was significant across recording sessions (χ2(1) = 7, 
P = 0.009). Similar results were obtained when using mixtures of 
Gaussians (Methods).

Coordinated, intermittent rate-coding of memoranda
Having identified evidence of two discrete states, we next sought to 
label them on individual trials. We repeated the above classification 
procedure 50 times, shuffling condition labels on each iteration, to 
obtain a null distribution of confidence values for each trial (Fig. 4a 
and Methods). Across the cue and delay epochs, we labelled contigu-
ous time points in which confidence was significantly greater than the 
null as ‘On’ states and labelled contiguous non-significant time points 
(P > 0.20) as ‘Off’ states. During each trial, we observed a mean of 
2.35 ± 0.04 (median, 2.0) On states and a mean of 3.74 ± 0.04 (median, 
4.0) Off states from the cue period until the end of the memory delay 
(Fig. 4b). Periods in which confidence was significantly below the 
null (confidently incorrect) were rare (mean, 0.11 ± 0.01 per trial). 
The mean duration of On states was 192.4 ± 2.1 ms (median, 150), 
and the mean duration of Off states was 146.1 ± 1.7 ms (median, 100) 

(Fig. 4c). State (On or Off) at the time of the go cue predicted behav-
ioural performance and reaction times in all three animals (Extended 
Data Fig. 2b,c). Importantly, classifiers trained only on Off states and 
tested on held-out Off states did not perform reliably above chance 
(Extended Data Fig. 6a), suggesting that Off states reflect time periods 
with no reliable information, and not a less frequent, second coding 
scheme that our original classifier failed to capture. In addition, we 
were not able to identify any predictive relationship between the 
phase of the local field potential along a range of frequency bands 
and On and Off states (Extended Data Fig. 6b), suggesting that these 
fluctuations in confidence are distinct from the rhythmic sampling 
of attention described previously41. Finally, estimates of background 
noise42 did not differ between On and Off states, indicating that they 
were not associated with fluctuations in recording quality (Extended 
Data Fig. 6c).

Having labelled On and Off states in this way, we next assessed their 
explanatory power and examined how they were reflected in the activity 
of individual neurons during the memory delay using cross-validation. 
To do this, we used half of the neurons recorded during each session 
to label states as On and Off and then examined the activity of neurons 
in the remaining (held-out) half of the population from the same ses-
sions. We then repeated this process, switching training and test labels, 
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allowing an unbiased analysis of all 8,225 units (Methods). Indeed, we 
found that activity differed markedly between On and Off states in 
two ways. First, spatial tuning during the memory delay, a hallmark 
of spatial working memory43,44, depended heavily on state. During On 
states, held-out neurons were strongly tuned to the location of the 
remembered cue (Fig. 4d and Extended Data Fig. 7). By contrast, during 
Off states, spatial tuning was virtually eliminated (Fig. 4d and Extended 
Data Fig. 7). Accordingly, there was a significant interaction between 
cue location and state (On or Off) on firing rates (two-way repeated 
measures analysis of variance (ANOVA), P < 0.001). Whereas cue loca-
tion explained an average of 8.2% of variance in firing rate during On 
states, it explained only 0.7% during Off states, a 12-fold decrease. Thus, 
Off states were associated with a pronounced loss of spatial tuning at 
the level of individual neurons.

Second, average firing rates during the memory delay also depended 
on state. During On states, held-out neurons exhibited firing rates 
above spontaneous levels (mean 5.8 ± 0.4 Hz precue baseline) dur-
ing the memory delay (P < 0.001, sign-rank; Fig. 4e). By contrast, dur-
ing Off states, firing rates were statistically indistinguishable from 
spontaneous levels (P = 0.192) and significantly lower than On states 
(P = 0.001). Thus, Off states were associated not only with a loss of 
spatial selectivity but also with a collapse of firing rates to sponta-
neous levels. Together, these results show how transitions between 
On and Off states, derived from confidence values, reflect changes in 

basic firing-rate properties of individual neurons. Furthermore, these 
observations show that transitions between On and Off states during 
the memory delay are coordinated across neurons within the local  
population.

Cue-specific neuronal ensembles during memory delay
The fact that cue information carried by neuronal firing rates is peri-
odically lost during memory delay suggests that persistent activity 
may not be sufficient to support working memory. Therefore, we next 
considered evidence in favour of synaptic models. These models pro-
pose that, rather than persistent activity, working memory is instead 
represented by cue-specific networks of neurons4,5,24 (Fig. 5a)—that 
is, cue-specific neuronal ensembles should be a signature of work-
ing memory. Thus, we next looked for cue-specific cell assemblies 
during the memory delay. As in our analyses of firing-rate dynamics, 
we leveraged the Neuropixels recordings to measure functional con-
nections among the very large numbers of simultaneously recorded 
neuronal pairs (mean, 52,314 ± 11,252 pairs per session). Specifically, 
we examined neuronal cross-correlations to assess their dependence 
on working memory.

To do this, we computed the cross-correlogram (CCG) between all 
neuronal pairs in each experimental session and for each cue condi-
tion based on activity during the memory delay. CCGs were computed, 
thresholded and firing rate normalized using established methods45,46 
(Fig. 5b, Extended Data Fig. 8 and Methods). We focused on CCGs 
with peaks at low latency (below 10 ms (refs. 45,47)), non-zero time 
lags, which are those most consistent with synaptic connections48.  
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In our recordings, we observed CCGs with low-latency, suprathreshold 
peaks (‘significant CCGs’) of this type in 1.36 ± 0.22% of neuronal pairs, 
which totalled 12,740 significant CCGs across all sessions. Consist-
ent with previous work46, the probability of observing a significant 
CCG decreased with the distance between neurons (r(39) = −0.42, 
P = 0.007). Significant CCGs were found at all penetration sites. Next, 
we compared the pattern of CCGs across cue conditions. Figure 5c 
shows an example of a comparison of significant CCGs computed 
for two cue conditions (0 and 180°) in one recording session. In this 
example session, the two conditions exhibited highly dissimilar 
ensembles of functionally connected neurons. To quantify the dis-
similarity, we counted the number of condition-unique CCGs, yielding 
the Manhattan distance, which could then be compared with a null 
distribution derived from condition-shuffled data (Fig. 5d). We then 

repeated this procedure for all possible pairs of conditions in each 
session (Fig. 5e). Across sessions, mean Manhattan distance was sig-
nificantly greater than that predicted by chance (P < 0.001, sign-rank; 
Fig. 5f and Extended Data Fig. 7). This effect remained significant 
when confined to a comparison of firing-rate-matched conditions 
(P < 0.001, sign-rank; Extended Data Fig. 9 and Methods). Thus, the 
ensemble of functionally connected neurons significantly depended 
on the remembered cue.

If the observed cue-specific ensembles support working memory, 
these should be evident when cue information in firing rates is absent. 
To test this, we repeated the above analysis separately for On and Off 
states. Notably, Manhattan distance was not significantly greater than 
chance during On states (P = 0.129, sign-rank; Fig. 5f and Extended 
Data Fig. 7). However, during Off states, when spatial tuning was 
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virtually absent and firing rates transitioned to spontaneous levels 
(Fig. 4d,e), Manhattan distance was significantly greater than chance 
(P < 0.001, sign-rank). This pattern of effects remained when con-
fined to comparisons of firing-rate-matched conditions (P = 0.062 
and 0.001 for On and Off states, respectively, sign-rank; Extended 
Data Fig. 9 and Methods). Thus, even in the absence of persistent 
memory delay activity, memoranda information was reflected in the 
cue-specific ensembles of functionally connected neurons.

How might spiking and activity-silent coding work together to sup-
port memory? Synaptic models of working memory propose that 
evoked responses to a memory cue potentiate synapses between 
cue-selective neurons through STP (Fig. 6a). During the subsequent 
memory delay, this evoked response relaxes to spontaneous levels. 
However, the cue-specific pattern of potentiated synapses remains. 
Consequently, cue-specific elevations in firing rate may nonetheless 
re-emerge owing to non-specific fluctuations in extrinsic or intrinsic 
activity. Thus, across a memory delay, multiple transitions between 
spiking and activity-silent modes (On and Off) may occur4,24.

This account makes two testable predictions. First, it predicts a 
stable memory code—that is, despite the interruption of Off states, 
the same pattern of cue-selective spiking activity should support 
memory during On states throughout the memory delay. Indeed, 
similar to previous studies49, we found that the trial-averaged per-
formance of classifiers trained on cue-evoked responses success-
fully generalized across the entire memory delay (Fig. 6b). Demixed 
principle component analysis50 and analysis of single neurons also 
supported a stable memory code (Extended Data Fig. 10). Second, 
there should be a correspondence between spiking responses evoked 
by the cue and functional connectivity observed during memory 
delay. Thus, two neurons exhibiting evoked responses to a given cue 
should tend to be functionally connected during memory. In our data, 
when considering any single cue location, 1.47 ± 0.4% of neuronal 
pairs responded preferentially to that cue location shortly after cue 
onset (average percentage across the eight possible cue locations). 
In addition, an average of 1.4 ± 0.2% of neuronal pairs exhibited sig-
nificant CCGs to that cue location during memory delay (Fig. 6c). If 
these proportions are independent, their conjunction should occur 
at a rate equal to their product. On the contrary, we found that pairs 
showing spiking responses and significant CCGs to the same cue were 
observed 2.5 times more than expected (P  < 0.001, sign-rank; Fig. 6d). 
Thus, neurons that responded jointly during the evoked response 
were more likely to be functionally connected during memory delay, 
consistent with synaptic models. Overall, 55% of neurons showed a 
cue-specific evoked response, 81% were involved in a cue-specific 
functional connection and 10.4% were involved in such jointly selec-
tive and connected pairs.

Discussion
These results elucidate the role of persistent and synaptic mecha-
nisms in supporting working memory. By measuring the spiking 
of large, local populations of prefrontal neurons and resolving the 
dynamics of mnemonic information on single trials, we found that 
this information does not persist through the memory delay. Instead, 
cue-specific spiking activity was intermittent and was characterized by 
stochastically occurring, discrete transitions between robust coding 
of memoranda (On states) and complete lapses in such coding (Off 
states). Notably, these transitions were coordinated across large, local 
populations of neurons. Complementary to spike-rate-based coding, 
patterns of functional connectivity also carried information about 
the remembered cue during Off states. These patterns in functional 
connectivity are consistent with synaptic models of working memory 
in which cue-specific patterns of potentiated synapses facilitate the 
re-emergence of memory information in spike rates following silent  
epochs4,5,24.

Our observations describe the dynamics of local populations of 
neurons in the primate lateral prefrontal cortex. Future work should 
explore these dynamics in other structures known to exhibit memory 
delay activity—for example, parietal cortex19—and on broader spatial 
scales, including the possible propagation of On states across the cor-
tical surface51 or distributed representations supporting memory52,53. 
Nevertheless, two facts suggest that the regions targeted by the pre-
sent study play a key role in working memory. First, focal inactivation 
of lateral prefrontal cortex has long been known to severely impair 
performance in spatial working memory tasks54–56, including selective 
inactivation of memory delay activity57. Second, in the context of our 
study, single-trial confidence at the onset of the behavioural response 
phase predicted behaviour.

Similar, large-scale electrophysiological approaches should be 
used to assess the relative roles of spiking and putative synaptic 
mechanisms across a range of working memory tasks. For example, 
such roles may be rather different for spatial and object-based work-
ing memory, given the apparent differences between the two in the 
robustness of memory delay spiking activity across brain areas58. Fur-
thermore, theoretical work suggests that the relative contributions 
of these two mechanisms may be related to the level of manipulation 
of remembered information required by a task59. The spatial tasks 
used here demand a relatively straightforward sensory-to-motor 
transformation, and so could rely more on synaptic mechanisms. 
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Fig. 6 | Stability of spike coding and cue specificity of neuronal ensembles 
in synaptic model predictions. a, Cartoon depicting the interplay between 
spiking and silent mechanisms during working memory from synaptic models 
of working memory. Following the before-cue period, the memory cue evokes  
a distinct pattern of activity among a network of neurons (circles) and a  
distinct pattern of STP, temporarily facilitating connectivity (lines) among 
cue-associated neurons. During memory delay, even in the absence of 
persistent-spiking activity (Off states), cue information persists in the distinct 
pattern of connections. During the On state, non-specific drive reignites 
spiking activity among cue-associated neurons. Bidirectional arrows denote 
stochastic transitions between Off and On states. b, Mean classifier accuracy 
(n = 25 sessions) plotted over time points on which the classifier was trained 
and tested. The block structure indicates good generalization across time. 
White line denotes the boundary of above-chance classification (P < 0.001, 
cluster-mass test, corrected for multiple comparisons). c, Left, probability (P) 
that both of a pair of neurons responded preferentially to the same cue  
during the evoked response (0–400 ms after cue). Right, probability that 
both of a pair of neurons exhibited significant CCG to a particular cue during 
memory delay. d, Proportion of pairs that were both jointly selective and 
connected, divided by the proportion expected. Violin plots indicate 
bootstrap across n = 25 sessions. ***P < 0.001, two-sided sign-rank versus 
one-sided (P = 1.2 × 10−5).
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Empirical verification of how task demands sculpt memory represen-
tations will lead to a richer understanding of the mechanistic basis 
of working memory.

Finally, it is interesting to note that, even within a single experi-
mental session and task condition, the relative proportions of On and 
Off states showed a fair degree of heterogeneity across trials. Recent 
electrophysiological studies provide evidence of coordinated fluctua-
tions in local neuronal activity in alert animals60. Furthermore, these 
coordinated fluctuations appear related to moment-to-moment 
changes in global arousal states, and also predict psychophysical 
performance in non-human primates61,62. Neuromodulatory inputs 
are among the many possible mechanisms that may contribute to 
coordinated fluctuations in neuronal activity63. Dynamics in the local 
tone of neuromodulators may be sufficient to induce transitions in 
local cortical states60. Within lateral prefrontal cortex, dopaminergic 
tone is known to play a key role in the maintenance of memory delay 
activity64,65. Thus, examining the contribution of dopaminergic tone 
to the variability in the dynamics of memoranda coding could prove  
illuminating.
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Methods

Subjects
Three adult male rhesus monkeys (Macaca mulatta), aged 11, 12 and 
8 years, participated in the experiment. Monkeys A, H and J weighed 
11, 14 and 12 kg, respectively. All surgical and experimental procedures 
were approved by the Stanford University Institutional Animal Care 
and Use Committee and were in accordance with the policies and pro-
cedures of the National Institutes of Health.

Behavioural task
Stimuli were presented on a VIEWPixx3D monitor positioned at a view-
ing distance of 60 cm using Psychtoolbox and MATLAB (v.R2022a, 
MathWorks). Eye position was monitored at 1 kHz using an Eyelink 1000 
eye-tracking system (SR Research). On each trial, the animals were 
presented with a cue at one of eight possible locations and reported 
this location after a brief memory delay to receive a fluid reward. Cues 
were square frames (green for monkey A, black for monkey H, white 
for monkey J) measuring 1° of visual angle on a side, and presented at 
5–7° of eccentricity (depending on the session).

Monkeys initiated behavioural trials by fixating a central fixation spot 
presented on a uniform grey background. After the monkeys had main-
tained fixation for 600–800 ms (randomly selected on each trial), a cue 
appeared for 50 ms at one of eight possible locations separated by 45° 
around fixation. Cue presentation was followed by a delay period that 
varied randomly from 1,400 to 1,600 ms. Following the delay period, 
the fixation spot disappeared and the animal was presented with one 
of two possible response screens. On MTS trials, two targets appeared 
(filled blue circles, radius 1° of visual angle (DVA)): one at the previously 
cued location and the other at one of the seven remaining non-cued 
locations. On MGS trials, no targets appeared. In either case, the ani-
mals received a reward of juice for making an eye movement to within 
5 DVA of the previously cued location and then maintaining fixation 
for 200 ms. MTS and MGS trials were randomly interleaved such that 
the animals could not predict the trial type. Monkey J was trained on, 
and performed only, the MGS task. The animals had to maintain their 
gaze within either 3 DVA (monkey A) or 2 DVA (monkeys H and J) from 
fixation throughout the trial until the response stage. The intertrial 
interval was 300–1,000 ms following each correct response. Failure 
to acquire fixation, fixation breaks and incorrect responses were not 
rewarded and were followed by a 2,000 ms intertrial interval.

Surgical procedures and recordings
Monkeys were implanted with a titanium headpost to immobilize the 
head, and with a titanium chamber to provide access to the brain (see 
ref. 12 for full details). In a previous study66, we identified the frontal 
eye field based on its neurophysiological characteristics and ability to 
evoke saccades with electrical stimulation at low currents67. Here we 
recorded from both area 8, within and anterior to the frontal eye field, 
and the principal sulcus (9/46) (monkey A, area 8; monkey H, areas 8 
and 9/46; monkey J, area 9/46), using primate Neuropixels probes39. 
During each session, we pierced the dura using a screw-driven, 21-gauge 
pointed cannula and lowered a single probe through this cannula using 
a combination of custom three-dimensional printed grids and motor-
ized drives (NAN instruments). Probe trajectories spanned several corti-
cal columns, as inferred from the broad distribution of preferred cue 
locations across neurons. Recordings were allowed to settle for around 
30 min before the start of the experiment, to mitigate drift. We config-
ured probes to record from 384 active channels in a contiguous block, 
allowing dense sampling of neuronal activity along a 3.84 mm span.

Neuropixels filter and digitize activity at the headstage separately for 
the action potential bands (300 Hz high-pass filter, 30 kHz sampling fre-
quency) and local field potential (1 kHz low-pass filter, 2.5 kHz sampling 
frequency). Activity was monitored during experimental sessions and 
saved to disk using SpikeGLX (https://billkarsh.github.io/SpikeGLX/).

Data preprocessing
Spiking in the action potential band was identified and sorted offline 
using Kilosort3 (ref. 68). Because we were interested in population-level 
coding of memory, we analysed both putative single- and multi-unit 
clusters identified by Kilosort. Spike times were aligned to a digital trig-
ger on each trial, indicating cue onset, and corrected for a lag in stimulus 
presentation estimated offline using photodiode measurements from 
the stimulus display and the timing of the cue-evoked response. Neu-
rons that fired fewer than 1,000 spikes in the experimental sessions 
(each roughly 3 h) were excluded from further analyses. Spike times 
were converted to smoothed firing rates (sampling interval, 10 ms) 
by representing each spiking event as a delta function and convolving 
this time series with a 100 ms boxcar. For CCG analyses, unsmoothed 
spikes times were binned with a width and timestep of 1 ms. Incorrect 
trials were rare (Fig. 1b) and were excluded from subsequent analysis. 
Waveform templates were localized in space using NeuropixelUtili-
ties (https://djoshea.github.io/neuropixel-utils/). Local field poten-
tials (LFPs) were sampled at 2,500 Hz. Offline, LFPs were filtered 
using a 2–200-Hz-bandpass, zero-phase Butterworth, notch filtered 
at 60 Hz and downsampled to 1,000 Hz. LFPs were transformed into 
the time-frequency domain using Morlet wavelets and downsampled 
to 100 Hz.

Statistics and reproducibility
All statistical tests are two-sided unless otherwise specified. Key find-
ings and brain–behaviour relationships were evident in each of the three 
animals (Extended Data Figs. 2 and 7), and in each of the 25 individual 
experimental sessions (Extended Data Fig. 3). Sample size (three ani-
mals, 8,255 neurons) was chosen based on standards in the field. Each 
animal was exposed to every task manipulation. Within a session, task 
manipulations were randomized across trials. Neurons were recorded 
without bias, and electrodes placed to maximize signal-to-noise of the 
electrophysiological signal.

Functional subtyping
To determine the functional subtype of units69 (Extended Data Fig. 1), 
we analysed firing rates during three time epochs: visual (0–300 ms 
after cue onset), memory (500–1,400 ms after cue onset) and motor 
(100–300 ms post-fixation offset). A unit was labelled as being selective 
during a given epoch if firing rates during that epoch were significantly 
modulated by cue location (one-way ANOVA, P < 0.05 criterion). Units 
were then sorted into functional subclasses based on the set epochs 
during which each unit was selective.

Classification of cue location
Firing-rate estimates for each unit and time point relative to cue onset 
were z-scored across trials before classification. We used linear classi-
fiers to quantify the amount of information on the location of the cue 
in populations of simultaneously recorded units. We held out each trial 
for test one by one, training a logistic regression classifier (as imple-
mented by fitclinear.m in MATLAB) to predict cue location using the 
population vector of firing rates. Specifically, classifiers were trained 
to discriminate the same cue location as the test trial from the opposite 
cue location, using the applicable subset of trials from the training 
set. Data were subsampled during training to equalize trial counts 
for the two conditions. A unique classifier was trained and tested for 
each time point relative to cue onset. ‘Classification accuracy’ reflects 
the proportion of correctly classified test trials (Fig. 2c); ‘classifier 
confidence’ is the non-thresholded value of the logistic function cor-
responding to the probability assigned by the classifier to the correct 
label at test (Fig. 3).

Cross-state classification (Extended Data Fig. 6a) was similar, except 
that only values from trial time points labelled On or Off (as appropriate) 
entered the training set or were held out as a test trial. Test confidence 
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values were averaged across the memory delay (500–1,400 ms after 
cue) to yield the final results.

Cross-temporal classification (Fig. 6b) was also similar, except that 
we used a split-half approach in which the classifiers for each time point 
were trained on half of the available population of trials and tested 
(cross-temporally) using the other half.

Mixture modelling of confidence
We used a mixture-modelling approach to test whether confidence dur-
ing the memory delay (500–1,400 ms after cue) was best described as 
drawn from a one- or a two-state distribution (Extended Data Fig. 5). To 
do this, for each session and cue location we modelled the probability 
density function of confidence values during the memory delay as 
either a single beta distribution,

p c c α β( ) = Beta( ; , ),

or a mixture of two beta distributions,

p c w c α β w c α β( ) = × Beta( ; , ) + (1 − ) × Beta( ; ′, ′),

where c is confidence, α β α, , ′ and β′ parameterize beta distribution(s) 
and w is the mixing coefficient. The best-fitting parameters of each 
model were identified by maximum-likelihood estimation using gradi-
ent descent in MATLAB. We used fourfold cross-validation on the 
population of trials to assess the likelihood of each model on held-out 
test data, and then normalized by the number of trials and changed 
the log likelihood to base 2 to yield the cross-validated score of each 
model in terms of bits per trial. Finally, we subtracted these two model 
scores and averaged across conditions to yield the difference in model 
performance for each session.

Note that our choice of beta distribution here is principled: it is 
extremely flexible, able to demonstrate a broad range of skewness 
and kurtosis and naturally accommodates bounded continuous vari-
ables such as confidence70. This flexibility makes this analysis con-
servative, ensuring that the one-state model is capable of describing a 
broad range of empirical distributions. Nevertheless, results were not 
dependent on the exact modelling approach: similar results for our 
one-versus-two-state model comparison were obtained when using 
either Gaussian mixture or hidden Markov models.

Analysis of microsaccades
The horizontal and vertical eye position records were convolved with 
a Gaussian kernel (σ = 4.75 ms) to suppress noise before taking first 
derivatives, yielding the eye velocity along each dimension. We then 
took the root sum of squares of the horizontal and vertical velocities to 
obtain eye speed. We flagged peaks in this time series with a minimum 
peak height of 10° s−1 and a minimum interpeak distance of 50 ms as 
microsaccades (ref. 71 and Extended Data Fig. 4), which were confirmed 
by visual inspection of the data.

Labelling of On and Off states
To identify On and Off states (Fig. 4a), we repeated the cue classifica-
tion analysis described above 50 times, randomly shuffling the labels 
of the training set for each test trial. This yielded, for each trial, a null 
distribution of 50 confidence time series (Fig. 4a). We then z-scored 
each time point of the true confidence time series by the mean and 
standard deviation of this null distribution. Individually significant 
(above 1.96) z-values were cluster corrected for multiple comparisons 
over time72. In brief, we compared the sum of contiguous individu-
ally significant z-values with that expected by chance (randomization 
test). Clusters with a mass greater than the 95% percentile of the null 
were labelled On states; contiguous z-values falling below a conserva-
tive (P > 0.20) threshold for at least five consecutive time points were 
labelled Off states.

Tuning curves
To test whether On and Off states reflected coordinated changes in 
tuning across the neural population, we used a split-half approach. 
First, firing-rate estimates for each unit and time point relative to 
cue onset were z-scored across trials. Then, for each session, we 
randomly divided the population of units in half. We used one half 
of the units to identify On and Off states, as described above. Next, 
for each unit in the held-out population, we computed mean firing 
rate during the memory delay for each cue location separately for 
On and Off states, averaging across relevant time points and across 
trials. This yielded, for each unit, two eight-element vectors—the 
On and Off tuning functions. To align tuning functions across units, 
the preferred cue location for each was identified as the condition 
in which the sum of the On and Off functions was greatest, and 
assigned an arbitrary value of zero degrees. Alignment of tuning 
curves to the maximum-valued preferred cue in this way will nec-
essarily produce a peak at zero degrees in the average tuning func-
tion, even in the absence of true tuning. To correct for this, for each 
unit we also computed null On and Off tuning functions by first 
shuffling cue labels across trials, aligned these to the preferred cue 
and subtracted them from the true On and Off tuning functions  
(Fig. 3d).

For demonstration purposes, we fit the average On and Off tuning 
functions with a difference of Gaussians using gradient descent in  
MATLAB. Difference of Gaussians is useful for describing tuning curves 
that show surround suppression73.

Population firing rates
To describe how population firing rates evolved over the course of 
the trial, we averaged these across all units recorded in the same 
session and across all trials for the preferred cue location (greatest 
mean classification confidence during the memory delay), yielding 
a single time series for each session. We then normalized this time 
series by the mean and standard deviation of a 400 ms baseline period 
(−400 to 0 ms relative to cue onset), yielding a metric of population 
spiking in units of standard deviations above baseline (Fig. 4e, grey 
traces). We repeated this analysis for the memory delay, this time 
including only data points labelled On or Off (Fig. 4e, orange and blue  
traces).

Phase–state relationships
To determine whether the phases of different frequency components 
of the LFP were predictive of On and Off states, we first extracted the 
phase from the time-frequency representation of the LFP. Next, we 
identified the onset time of On and Off states during the memory delay 
across all trials within a session. Then, for each session, probe channel 
and frequency (4–60 Hz), we computed the (circular) mean phase at 
On state and Off state onset, and the magnitude of the angular dif-
ference between these means. If phase is predictive of state, this dif-
ference should be larger than that expected by chance. Accordingly, 
we obtained a null distribution of phase difference magnitudes by 
repeating this procedure 1,000 times, randomly permuting On and 
Off labels for each phase measurement on each iteration and used this 
null distribution to generate a z-score metric. Z-scores were averaged 
across channels, yielding a phase–state metric for each session and 
frequency of interest. Finally, we tested whether these scores were 
greater than zero for each frequency of interest (cluster-corrected 
randomization test).

Standard deviation of background noise
To ensure that changes in recording quality could not account for 
the presence of On and Off states in our recordings, we measured the 
standard deviation of background noise42 in the action potential band 
(0.3–10 kHz). Specifically, for each On and Off state identified using the 
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non-parametric procedure described above, noise standard deviation 
was estimated as

σ
x

= median
| |

0.6745
,n









where x is the time series of raw action potential band values recorded 
during the state. Noise estimates were averaged across all On and Off 
states within each session.

Demixed principal components analysis
We used demixed principal components analysis analysis to decompose 
population activity into different components reflecting cue location, 
time and their interaction. As with our classification-based analyses, 
we applied demixed principal components to the smoothed firing 
rates from each session, focusing on activity during the delay period 
(500–1,400 ms after cue). The proportion of variance explained and 
components were extracted as described in ref. 50.

Single-neuron ANOVA
We downsampled the smoothed firing rates for each neuron to 100 ms 
steps and modelled firing rate during the delay (500–1,400 ms after 
cue) as a linear combination of cue location, firing rate and their inter-
action, to estimate the proportion of variance explained by each of 
these terms.

CCG analysis
To characterize functional connectivity among units, we computed 
cross-correlations between spike trains of all pairs of simultaneously 
recorded neurons with mean firing rates greater than 1 Hz. CCGs 
were computed separately for each cue location. Following previous  
studies46, to mitigate firing-rate effects, we normalized cross-correlation 
for each pair of neurons by the geometric mean of their firing rates for 
the cue location condition under consideration. The CCG for a pair of 
neurons ( j, k) in condition c was therefore
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where M is the number of trials collected for cue location c, N is the 
number of time bins within a trial, τ is the time lag between the two 
spike trains and x t( )k

i  is 1 if neuron j is fired in time bin t of trial i, but 
zero otherwise.

To correct for correlation due to stimulus locking or slow fluctuations 
in population response, we subtracted a jittered CCG from the original. 
This jittered CCG reflects the expected value of the CCG computed from 
all possible jitters of each spike train within a given jitter window74,75. 
The jittered spike train preserves both the poststimulus time histogram 
(PSTH) of the original spike train across trials and the spike count in the 
jitter window within each trial. As a result, jitter correction removes the 
correlation between PSTHs (stimulus locking) and those on time scales 
longer than the jitter window (slow population correlations). We chose 
a 25 ms jitter window, following previous work45,46,76,77.

We classified a CCG as significant if the peak of the jitter-corrected 
CCG occurred within 10 ms of zero and was more than seven stand
ard deviations above the mean of a high-lag baseline period (100 >  
|τ| > 50)45. Zero-lag CCGs were excluded from the analyses reported 
here, although their inclusion yielded statistically indistinguishable 
results.

All CCGs were estimated using spike trains during the memory delay 
(500–1,400 ms after cue) to avoid the influence of visually evoked 
responses. CCG analyses specific to On and Off states (Fig. 5f) were com-
puted by first setting x(t) to zero for all time points not identified as On 
or Off (respectively), and then repeating the analysis described above.

Manhattan distance
To determine whether patterns of functional connectivity differed 
according to the contents of memory, we compared the graphs of sig-
nificant CCGs across cue locations in a pairwise manner (Fig. 5c–f). For 
each session and cue location, we represented the results of our CCG 
analyses as a graph in which nodes were units. The edge (connection) 
between each pair of units was assigned a weight of 1 if the pair had a 
significant CCG, and zero otherwise. Then, for each possible pair of 
cue locations, we computed the Manhattan distance, the number of 
edges with a weight that differed across the two graphs. Finally, we 
averaged this metric across all 28 possible pairs of conditions, yielding 
one summary statistic per session.

To normalize this mean Manhattan distance for comparison across 
sessions, we shuffled the cue location labels within each pair of neu-
rons for each pair of conditions under consideration across trials, and 
repeated the entire analysis pipeline 50 times (25 for analyses specific 
to On and Off states), from CCG estimation through Manhattan dis-
tance calculation. We then z-scored the mean Manhattan distance for 
each session by this null distribution and compared these z-scores to 
zero (Fig. 5f).

Note that CCGs among both single and multi-units have been 
widely used as a measure of functional connectivity78–84. Indeed, 
CCGs based on multi-unit activity may be more sensitive in detec-
tion of correlations in spiking than similar analyses of single-neuron 
pairs78,85,86. Nonetheless, the presence of multi-units in our dataset 
does limit the conclusions that might be drawn about the specific 
neuronal subtypes involved in the cue-dependent ensembles that 
we observe—for example, putative pyramidal versus non-pyramidal  
neurons.

Firing-rate-matched control
The geometric mean firing rate of pairs of units varied significantly 
across the eight cue locations (one-way ANOVA, P = 0.002; Fig. 6a). 
Geometric mean firing rates were statistically indistinguishable, how-
ever, across cue locations 1–4 (P = 0.332) and 5–8 (P = 0.884). Therefore, 
we repeated the analysis of Manhattan distance described above, this 
time computing it among only cue locations 1–4 and 5–8 (Extended 
Data Fig. 6b), to yield a firing-rate-matched variant of the analysis  
presented in Fig. 5f.

Joint selectivity
To determine the selectivity of units during the evoked response, we 
averaged each unit’s cue-locked firing rate over time (0–400 ms after 
cue onset), yielding an nTrials × 1 vector of firing rates. We then per-
formed one-way ANOVA to evaluate the relationship between cue loca-
tion and firing rate. If the effect of cue location was significant (P < 0.05), 
the unit was deemed selective to cue location, and the location at which 
it had the greatest mean firing rate was labelled the preferred location. 
Pairs of units were deemed jointly selective if they were selective for 
the same cue location.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data underlying this study are available at Dryad (https://doi.
org/10.5061/dryad.kkwh70sct)87.

Code availability
The code underlying this study is available at GitHub (https://github.
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Extended Data Fig. 1 | Normalized spatial distance between different 
functional classes of neurons within lateral prefrontal cortex. Seven 
functional classes of neurons were defined according to selective activity  
to three task components: visual, delay, and motor. Neurons were defined  
as having a given functional property based on the presence of significant 
selectivity across cue conditions within the visual, delay and motor epochs  
of the task. The plot shows the mean distance between different classes of 
neurons; means were calculated and normalized by each session’s total mean 
distance. Top-left to bottom-right diagonal elements show the mean distance 
within each functional class. Interestingly, we did not observe a relationship 
between depth and different functional subclasses (not shown), although this 
result should be interpreted with caution due to our non-perpendicular 
electrode penetrations.



Extended Data Fig. 2 | Confidence and state predict behavior. (A) Regression 
coefficient relating classifier confidence to reaction time in milliseconds 
(average across sessions). Cue location and task (MTS/MGS) were included as 
co-regressors. Shaded area: 95% confidence intervals. (B) Mean proportion 
correct in the delayed match-to-sample (MTS) and memory-guided saccade 
(MGS) tasks, binned by state (orange = On, blue = Off) immediately after 

fixation offset. Error bars are 95% confidence intervals (binomial). (C) Regression 
coefficient relating state (On/Off) immediately after fixation offset to reaction 
time in milliseconds. Cue location and task (MTS/MGS) were included as 
co-regressors. Negative values indicate that On states are associated with 
reduced reaction times. Violin plots show bootstrap across sessions.
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Extended Data Fig. 3 | Single-trial classifier confidence, relative to cue onset, for all trials from the most preferred cue condition for each session. Color 
scale as in Fig. 2a.



Extended Data Fig. 4 | Classifier confidence was not affected by 
microsaccades. (A) Example trial showing eye speed data and microsaccade 
identification. Microsaccades were identified as peaks in eye speed >10 DVA/s. 
(B) Mean classifier confidence during the memory delay, locked to microsaccades 
(average across N = 8,910 microsaccades). Shaded area (small) indicates 95% 
confidence intervals. (C) Probability density of microsaccade angles during  
the memory delay, relative to the cued location. (D) Mean classifier confidence 
during the memory delay, locked to microsaccades to the cued location  
(+/− 20 degrees).
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Extended Data Fig. 5 | Mixture modeling of behavior. (A) Histogram of 
confidence values during memory delay time points (one cue location) from 
three example sessions. Dashed line shows the best fitting beta distribution. 
Solid line shows the best fitting mixture of two beta distributions. Purple and 
yellow lines show the individual component distributions for the two-state 
model. (B) Histogram showing average proportion-weighted component 

modes (bootstrap). (C) Cross-validated model comparison results for 2-state  
vs 1-state fits for all sessions (N = 25). The 2-state model outperforms the 1-state 
(p = 0.009, chi-squared). Light circles show individual session scores; dark 
circle shows mean across sessions; black line shows equivalent model 
performance.



Extended Data Fig. 6 | Off states were not explained by an alternate 
population code, rhythmic activity, or background noise. (A) Cross-validated 
classifier confidence, binned by training and test state. Left: classifier 
confidence when trained on Off states and tested on Off and On states. Right: 
classifier confidence when trained on On states and tested on Off states. Violin 
plots show bootstrap across sessions. (B) Mean phase-state relationship 

(z-scored) as a function of frequency. Gray traces show individual sessions 
(N = 25). Values reflect absolute angular difference between the mean phase of 
On and Off states, normalized by the null (randomization test). (C) Standard 
deviation of the background noise, in microvolts, averaged across all On and 
Off states. Small circles: individual session means; large circles: grand means. 
Background noise did not differ across On and Off states (p = 0.339, sign-rank).
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Extended Data Fig. 7 | Results for each animal. Top: Single-animal memory 
tuning functions for held-out units during On and Off states. Tuning functions 
show the mean normalized firing rate during the memory delay (z-scored 
across trials) for held-out units, relative to each unit’s preferred cue location. 

Error bars (small) denote SEM. Bottom: Single-animal mean normalized 
Manhattan distance, using data from the entire memory delay (gray), only 
during On states (orange), and only during Off states. Violin plots show 
bootstrap across sessions. Asterisks and ‘ns’ denote significance.



Extended Data Fig. 8 | Example cross-correlograms (CCGs) with significant 
and non-significant peaks. (A) All CCG functions from the “left” cue condition 
with a significant non-zero lag peak (pink), along with an equal number of 

randomly selected “non-significant” CCGs (grey) from that same cue 
condition. (B) Same as in A, for the “right” cue condition. All CCGs in each 
subplot are arranged by the lag of their maximum value.
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Extended Data Fig. 9 | Firing rate matching for CCG analysis. (A) Top: 
Normalized geometric mean firing rate (gFR) of all pairs of neurons during the 
memory delay. Bottom: Normalized number of neuronal pairs with significant 
CCGs. Gray lines show individual sessions; bars show mean across sessions; 
colors indicate cue location (lower inset). (B) Mean normalized Manhattan 

distances restricted to a comparison among cue conditions (1-4 and 5-8) in 
which gFR was equal (see Methods). Shown are means of data from all sessions 
during the entire memory delay (gray), only during On states (orange), and only 
during Off states. Violin plots show bootstrap across sessions.



Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Trial-averaged rate coding is predominantly stable 
over the memory delay. (A) Proportion of variance explained by each of the 
task components (dPCA). Violin plots reflect bootstrap across sessions.  
(B) Stable coding was also evident in the demixed components identified by 
dPCA. As with conventional PCA, each of these components can be understood 
as a linear combination (or, critically, a linear readout) of the population of trial-
averaged single-neuron PSTHs. For 21 of the 25 total experimental sessions, the 
dPCA component explaining the most variance in the data encoded the cue in a 

time-invariant manner. The largest component from the remaining 4 sessions 
was a cue-invariant ramp unrelated to mnemonic coding; for these sessions (C), 
the second component captured time-invariant information about the cue. 
Consistent with the analysis of explained variance, none of these components 
displayed sequential coding or other time-varying signals. (D) Proportion of 
neurons displaying a significant effect of cue, time, and their interaction 
during the memory delay.
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- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The data underlying this study are available on Dryad (https://doi.org/10.5061/dryad.kkwh70sct). 

Research involving human participants, their data, or biological material
Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender n/a

Reporting on race, ethnicity, or 
other socially relevant 
groupings

n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size As detailed in the manuscript, a total of 8,225 single and multi-unit neurons were recorded from 3 animal subjects across 25 experimental 
sessions. The number of subjects (3) is above the standard in the field (Fries & Maris, 2022). The number of neurons is in line with the current 
state-of-the-art (Trautmann et al., 2023). 

Data exclusions Neurons with very low firing rates were excluded from further analysis. Exclusion criteria are detailed in the methods. 

Replication Independent experiments were performed in 3 animals. All data were analyzed, except for the exclusion criteria described above. There were 
no failed replication attempts (i.e., no animals failed to learn the task and no neural recordings were excluded). 

Randomization Each animal was exposed to every task manipulation. Within a session, task manipulations were randomized across trials. Neurons were 
recorded without bias, with electrodes placed to maximize signal-to-noise of the electrophysiological signal.

Blinding All animals were assigned to a single experimental group, and so blinding was not necessary or possible. However, experimenters were 
blinded to experimental conditions during recording of neurons and during sorting of waveforms into single neurons.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Subjects were three adult male rhesus macaques (Macaca mulatta), ages 8, 11, and 12. 

Wild animals No wild animals were used in the study

Reporting on sex As monkey electrophysiology studies typically report findings from only a few subjects (Fries & Maris, 2022), isolating effects due to 
gender is typically not possible. All research subjects in the present study are male. 

Field-collected samples No field-collected samples were used in this study.

Ethics oversight All experimental procedures were approved by the Stanford University Animal Care and Use Committee and were in accordance 
with the policies and procedures of the National Institutes of Health.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Novel plant genotypes n/a

Seed stocks n/a

Authentication n/a

Plants
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